School of Animal, Plant and Environmental Sciences
Permanent URI for this community
For queries regarding content of Faculty of Science please contact Salome Potgieter by email : salome.potgieter@wits.ac.za or Tel : 011 717 1961
Browse
Browsing School of Animal, Plant and Environmental Sciences by Keyword "Actinobacteria phyla"
Now showing 1 - 1 of 1
Results Per Page
Sort Options
Item Diel-scale temporal dynamics recorded for bacterial groups in Namib Desert soil(Nature Publishing Group, 2017-01) Gunnigle, E.; Frossard, A.; Guerrero, L.; Seely, M.; Cowan, D.A.; Ramond, J.-B.Microbes in hot desert soil partake in core ecosystem processes e.g., biogeochemical cycling of carbon. Nevertheless, there is still a fundamental lack of insights regarding short-term (i.e., over a 24-hour [diel] cycle) microbial responses to highly fluctuating microenvironmental parameters like temperature and humidity. To address this, we employed T-RFLP fingerprinting and 454 pyrosequencing of 16S rRNA-derived cDNA to characterize potentially active bacteria in Namib Desert soil over multiple diel cycles. Strikingly, we found that significant shifts in active bacterial groups could occur over a single 24-hour period. For instance, members of the predominant Actinobacteria phyla exhibited a significant reduction in relative activity from morning to night, whereas many Proteobacterial groups displayed an opposite trend. Contrary to our leading hypothesis, environmental parameters could only account for 10.5% of the recorded total variation. Potential biotic associations shown through co-occurrence networks indicated that non-random inter- and intra-phyla associations were 'time-of-day-dependent' which may constitute a key feature of this system. Notably, many cyanobacterial groups were positioned outside and/or between highly interconnected bacterial associations (modules); possibly acting as inter-module 'hubs' orchestrating interactions between important functional consortia. Overall, these results provide empirical evidence that bacterial communities in hot desert soils exhibit complex and diel-dependent inter-community associations.