School of Animal, Plant and Environmental Sciences
Permanent URI for this community
For queries regarding content of Faculty of Science please contact Salome Potgieter by email : salome.potgieter@wits.ac.za or Tel : 011 717 1961
Browse
Browsing School of Animal, Plant and Environmental Sciences by Issue Date
Now showing 1 - 20 of 60
Results Per Page
Sort Options
Item Sex and age related distinctions in the feeding ecology of the African elephant(2010-01-29T08:19:33Z) Greyling, Michelle DeborahItem Land-cover change in the Kruger to Canyons Biosphere Reserve 1993-2006): A first step towards creating a conservation plan for the subregion.(Academy of Science of South Africa (ASSAf), 2010-07) Coetzer, K.L.; Erasmus, B.F.N.; Witkowski, E.T.F.; Bachoo, A.K.This paper is a first step towards a conservation plan for the Kruger to Canyons Biosphere Reserve K2C) on the South African Central Lowveld, quantifying the historical land-cover trends 1993-2006). During the analysis period, 36% of the biosphere reserve BR) underwent land-cover change. Settlement areas increased by 39.7%, mainly in rural areas, becoming denser, particularly along roadways. Human-Impacted Vegetation increased by 6.8% and Intact Vegetation declined by 7.3%, predominantly around settlement areas, which is testament to the interdependency between rural communities and the local environment. However, settlement expansion exceeded the rate of rangeland growth; in the long term, this may raise questions for sustainable resource extraction. Similarly, the block losses of intact vegetation are of concern; issues of fragmentation arise, with knock-on effects for ecosystem functioning. In the economic sector, agriculture increased by 51.9%, while forestry and mining declined by 7.1% and 6.3%, respectively. The future of these three sectors may also have significant repercussions for land-cover change in the BR. The identification of historical drivers, along with the chance that existing trends may continue, will have important implications for biodiversity protection in this landscape. Applied within a conservation-planning framework, these land-cover data, together with economic and biodiversity data, will help reconcile the spatial requirements of socio-economic development with those of conservation.Item GENETIC DIVERSITY AND GENE FLOW IN THE MORPHOLOGICALLY VARIABLE, RARE ENDEMICS BEGONIA DREGEI AND BEGONIA HOMONYMA (BEGONIACEAE)(2012-02-03) MATOLWENI, LUZUKO ORLYN; BALKWILL, KEVIN; MCLELLAN, TRACYExcellent models for the study of evolutionary pro¬cesses are often provided by taxa that pose the greatest problems in systematics (Wolf, Soltis, and Soltis, 1991). Endemic plants provide a superb tool for studying the dynamic processes of speciation and evolution, particu¬larly island endemic plants (Ito and Ono, 1990; Aradya, Mueller-Dombois, and Ranker, 1991; Barrett, 1996). Ev¬idence of most evolutionary events that formed continen¬tal biota has been lost because such biota are so ancient (Carson, 1987). Complex patterns of variation may blur species boundaries and lead to taxonomic complexity.Item Comparative ethnoentomology of edible stinkbugs in southern Africa and sustainable management considerations(BioMed Central, 2013) Catherine Maria Dzerefos, C.M.; Witkowski, E.T.F.; Toms, R.Insects, such as stinkbugs, are able to produce noxious defence chemicals to ward off predators, nevertheless, some ethnic groups have recipes to render them delicious. We provide an example of edible stinkbugs (Encosternum delegorguei) used by two locally separate ethnic groups in South Africa, the Vhavenda and Mapulana, with a third group, the Bolobedu using them for commercial purposes. Structured interview schedules and observations with 106 harvesters were conducted to determine differences in use, nomenclature and oral history, methods of collection and preparation as well as perceptions pertaining to availability. The stinkbugs’ foul defence chemical and flight response necessitates nocturnal harvesting when the insect is immobilised by cold. The defence chemical stains the skin and affects vision yet protective gear is not worn. Damage to host trees was recorded when harvesters poached from plantations or private land, whereas, in communal-lands, sustainable methods were preferred. The legitimisation of stinkbug harvesting and introduction of a collection funnel could reduce conflicts with managers of plantations and private land. Two methods to remove the defence chemical for increased palatability were used. Preparation methods differed in whether or not water was used and also whether the head was left intact or removed. Stinkbugs have numerous medicinal uses, in particular as a hangover cure. Awareness and optimal use of beneficial insects, such as stinkbugs, in rural areas could lead to a reconsideration of current environmental management strategies, where harvesters act as habitat stewards and clearing, grazing or burning indigenous vegetation is kept to a minimum.Item Silicon reduces impact of plant nitrogen in promoting stalk borer (Eldana saccharina) but not sugarcane thrips (Fulmekiola serrata) infestations in sugarcane.(Frontiers Media, 2014-06) Keeping, M.G.; Miles, N.; Sewpersad, C.The stalk borer Eldana saccharina Walker (Lepidoptera: Pyralidae) is a major limiting factor in South African sugarcane production, while yield is also reduced by sugarcane thrips Fulmekiola serrata Kobus (Thysanoptera: Thripidae). Borer management options include appropriate nitrogen (N) and enhanced silicon (Si) nutrition; the effect of N on sugarcane thrips is unknown. We tested the effects of these nutrients, in combination with resistant (N33) and susceptible (N27) sugarcane cultivars, on E. saccharina and F. serrata infestation. Two pot trials with three levels of N (60, 120, and 180 kg ha(-1)) and two levels each of calcium silicate and dolomitic lime (5 and 10 t ha(-1)) were naturally infested with thrips, then artificially water stressed and infested with borer. Higher N levels increased borer survival and stalk damage, while Si reduced these compared with controls. Silicon significantly reduced stalk damage in N27 but not in N33; hence, Si provided relatively greater protection for susceptible cultivars than for resistant ones. High N treatments were associated with greater thrips numbers, while Si treatments did not significantly influence thrips infestation. The reduction in borer survival and stalk damage by Si application at all N rates indicates that under field conditions, the opportunity exists for optimizing sugarcane yields through maintaining adequate N nutrition, while reducing populations of E. saccharina using integrated pest management (IPM) tactics that include improved Si nutrition of the crop and reduced plant water stress. Improved management of N nutrition may also provide an option for thrips IPM. The contrasting effects of Si on stalk borer and thrips indicate that Si-mediated resistance to insect herbivores in sugarcane has mechanical and biochemical components that are well developed in the stalk tissues targeted by E. saccharina but poorly developed in the young leaf spindles where F. serrata occurs.Item Risks to Birds Traded for African Traditional Medicine: A Quantitative Assessment(PLoS ONE, 2014-08-27) Williams, V.L.; Cunningham, A.B.; Kemp, A.C.; Bruyns, R.K.Few regional or continent-wide assessments of bird use for traditional medicine have been attempted anywhere in the world. Africa has the highest known diversity of bird species used for this purpose. This study assesses the vulnerability of 354 bird species used for traditional medicine in 25 African countries, from 205 genera, 70 families, and 25 orders. The orders most represented were Passeriformes (107 species), Falconiformes (45 species), and Coraciiformes (24 species), and the families Accipitridae (37 species), Ardeidae (15 species), and Bucerotidae (12 species). The Barn owl (Tyto alba) was the most widely sold species (seven countries). The similarity of avifaunal orders traded is high (analogous to ‘‘morphospecies’’, and using Sørensen’s index), which suggests opportunities for a common understanding of cultural factors driving demand. The highest similarity was between bird orders sold in markets of Benin vs. Burkina Faso (90%), but even bird orders sold in two geographically separated countries (Benin vs. South Africa and Nigeria vs. South Africa) were 87% and 81% similar, respectively. Rabinowitz’s ‘‘7 forms of rarity’’ model, used to group species according to commonness or rarity, indicated that 24% of traded bird species are very common, locally abundant in several habitats, and occur over a large geographical area, but 10% are rare, occur in low numbers in specific habitats, and over a small geographical area. The order with the highest proportion of rare species was the Musophagiformes. An analysis of species mass (as a proxy for size) indicated that large and/or conspicuous species tend to be targeted by harvesters for the traditional medicine trade. Furthermore, based on cluster analyses for species groups of similar risk, vultures, hornbills, and other large avifauna, such as bustards, are most threatened by selective harvesting and should be prioritised for conservation action.Item Dynamics of the oxygen, carbon dioxide, and water interaction across the insect spiracle(Hindawi Publishing Corporation, 2014-09-03) Simelane, S.M.; Abelman, S.; Duncan, F.D.This paper explores the dynamics of respiratory gases interactions which are accompanied by the loss of water through an insect's spiracle. Here we investigate and analyze this interaction by deriving a system of ordinary differential equations for oxygen, carbon dioxide, and water vapor. The analysis is carried out in continuous time. The purpose of the research is to determine bounds for the gas volumes and to discuss the complexity and stability of the equilibria. Numerical simulations also demonstrate the dynamics of our model utilizing the new conditions for stability and instability.Item Avoiding toxic levels of essential minerals: A forgotten factor in deer diet preferences.(Public Library of Science, 2015-01) Ceacero, F.; Landete-Castillejos, T.; Olguín, A.; Miguel, V.; Gallego, L.; Miranda, M.; García, A.; Martínez, A.; Cassinello, J.Ungulates select diets with high energy, protein, and sodium contents. However, it is scarcely known the influence of essential minerals other than Na in diet preferences. Moreover, almost no information is available about the possible influence of toxic levels of essential minerals on avoidance of certain plant species. The aim of this research was to test the relative importance of mineral content of plants in diet selection by red deer (Cervus elaphus) in an annual basis. We determined mineral, protein and ash content in 35 common Mediterranean plant species (the most common ones in the study area). These plant species were previously classified as preferred and non-preferred. We found that deer preferred plants with low contents of Ca, Mg, K, P, S, Cu, Sr and Zn. The model obtained was greatly accurate identifying the preferred plant species (91.3% of correct assignments). After a detailed analysis of these minerals (considering deficiencies and toxicity levels both in preferred and non-preferred plants) we suggest that the avoidance of excessive sulphur in diet (i.e., selection for plants with low sulphur content) seems to override the maximization for other nutrients. Low sulphur content seems to be a forgotten factor with certain relevance for explaining diet selection in deer. Recent studies in livestock support this conclusion, which is highlighted here for the first time in diet selection by a wild large herbivore. Our results suggest that future studies should also take into account the toxicity levels of minerals as potential drivers of preferences.Item Gene flow and population structure of a solitary top carnivore in a human-dominated landscape.(John Wiley and Sons Ltd, 2015-01) Mcmanus, J.S.; Dalton, D.L.; Kotzé, A.; Marshal, J.P.; Keith, M.; Smuts, B.; Dickman, A.While African leopard populations are considered to be continuous as demonstrated by their high genetic variation, the southernmost leopard population exists in the Eastern and Western Cape, South Africa, where anthropogenic activities may be affecting this population's structure. Little is known about the elusive, last free-roaming top predator in the region and this study is the first to report on leopard population structuring using nuclear DNA. By analyzing 14 microsatellite markers from 40 leopard tissue samples, we aimed to understand the populations' structure, genetic distance, and gene flow (Nm). Our results, based on spatially explicit analysis with Bayesian methods, indicate that leopards in the region exist in a fragmented population structure with lower than expected genetic diversity. Three population groups were identified, between which low to moderate levels of gene flow were observed (Nm 0.5 to 3.6). One subpopulation exhibited low genetic differentiation, suggesting a continuous population structure, while the remaining two appear to be less connected, with low emigration and immigration between these populations. Therefore, genetic barriers are present between the subpopulations, and while leopards in the study region may function as a metapopulation, anthropogenic activities threaten to decrease habitat and movement further. Our results indicate that the leopard population may become isolated within a few generations and suggest that management actions should aim to increase habitat connectivity and reduce human-carnivore conflict. Understanding genetic diversity and connectivity of populations has important conservation implications that can highlight management of priority populations to reverse the effects of human-caused extinctions.Item Coping with spatial heterogeneity and temporal variability in resources and risks: Adaptive movement behaviour by a large grazing herbivore.(Public Library of Science, 2015-02) Martin, J.; Benhamou, S.; Yoganand, K.; Owen-Smith, N.Movement is a key mean for mobile species to cope with heterogeneous environments. While in herbivorous mammals large-scale migration has been widely investigated, finescale movement responses to local variations in resources and predation risk remain much less studied, especially in savannah environments. We developed a novel approach based on complementary movement metrics (residence time, frequency of visits and regularity of visits) to relate movement patterns of a savannah grazer, the blue wildebeest Connochaetes taurinus , to fine-scale variations in food availability, predation risk and water availability in the Kruger National Park, South Africa. Wildebeests spent more time in grazing lawns where the grass is of higher quality but shorter than in seep zones, where the grass is of lower quality but more abundant. Although the daily distances moved were longer during the wet season compared to the dry season, the daily net displacement was lower, and the residence time higher, indicating a more frequent occurrence of area-concentred searching. In contrast, during the late dry season the foraging sessions were more fragmented and wildebeests moved more frequently between foraging areas. Surprisingly, predation risk appeared to be the second factor, after water availability, influencing movement during the dry season, when resources are limiting and thus expected to influence movement more. Our approach, using complementary analyses of different movement metrics, provided an integrated view of changes in individual movement with varying environmental conditions and predation risk. It makes it possible to highlight the adaptive behavioral decisions made by wildebeest to cope with unpredictable environmental variations and provides insights for population conservation.Item How accurate are coat traits for discriminating wild and hybrid forms of Felis silvestris?(Walter de Gruyter GmbH, 2015-02) Ballesteros-Duperón, E.; Virgós, E.; Moleón, M.; Barea-Azcón, J.M.; Gil-Sánchez, J.M.Hybridisation between domestic cats, Felis catus, and wildcats, Felis silvestris, could lead to the genetic extinction of the latter; therefore, checking hybridisation rates in wild populations is of vital conservation importance. However, detecting hybridisation in the field is particularly challenging. Here, we aim to test the success of morphological-based procedures for discriminating wildcats from their hybrids and domestic cats, against genetic methods. We checked 17 putative Spanish wildcats by using two different classification systems based on coat patterns. None of the putative wildcats analysed in this study seemed to have an admixed genotype. Concordance between genetic and pelage approaches was almost total: only one coat classification produced mixed results with detection of one potential hybrid. Assignment was worse when performed in the field after a rapid examination of coat characters. We conclude that classification systems using coat traits could serve as surrogates of genetic approaches, but only after careful examination of those characters with more discriminatory power. Thus, the control of hybrid populations in the field as a management tool to preserve the genetic identity of wild forms is problematic if based on crude approaches or incomplete classification systems.Item Space use variation in Co-occurring sister species: Response to environmental variation or competition?(Public Library of Science, 2015-02) Dufour, C.M.S.; Meynard, C.; Watson, J.; Pillay, N.; Ganem, G.; Rioux, C.; Benhamou, S.; Perez, J.; Du Plessis, J.J.; Avenant, N.Coexistence often involves niche differentiation either as the result of environmental divergence, or in response to competition. Disentangling the causes of such divergence requires that environmental variation across space is taken into account, which is rarely done in empirical studies. We address the role of environmental variation versus competition in coexistence between two rodent species: Rhabdomys bechuanae (bechuanae) and Rhabdomys dilectus dilectus (dilectus) comparing their habitat preference and home range (HR) size in areas with similar climates, where their distributions abut (allopatry) or overlap (sympatry). Using Outlying Mean Index analyses, we test whether habitat characteristics of the species deviate significantly from a random sample of available habitats. In allopatry, results suggest habitat selection: dilectus preferring grasslands with little bare soil while bechuanae occurring in open shrublands. In sympatry, shrubland type habitats dominate and differences are less marked, yet dilectus selects habitats with more cover than bechuanae. Interestingly, bechuanae shows larger HRs than dilectus, and both species display larger HRs in sympatry. Further, HR overlaps between species are lower than expected. We discuss our results in light of data on the phylogeography of the genus and propose that evolution in allopatry resulted in adaptation leading to different habitat preferences, even at their distribution margins, a divergence expected to facilitate coexistence. However, since sympatry occurs in sites where environmental characteristics do not allow complete species separation, competition may explain reduced inter-species overlap and character displacement in HR size. This study reveals that both environmental variation and competition may shape species coexistence.Item Strategies for managing complex social-ecological systems in the face of uncertainty: Examples from South Africa and beyond.(Resilience Alliance, 2015-03) Biggs, R.O.; Rhode, C.; Archibald, S.; Ocholla, P.O.; Phadima, L.J.; Kunene, L.M.; Mutanga, S.S.; Nkuna, N.Improving our ability to manage complex, rapidly changing social-ecological systems is one of the defining challenges of the 21st century. This is particularly crucial if large-scale poverty alleviation is to be secured without undermining the capacity of the environment to support future generations. To address this challenge, strategies that enable judicious management of socialecological systems in the face of substantive uncertainty are needed. Several such strategies are emerging from the developing body of work on complexity and resilience. We identify and discuss four strategies, providing practical examples of how each strategy has been applied in innovative ways to manage turbulent social-ecological change in South Africa and the broader region: (1) employ adaptive management or comanagement, (2) engage and integrate different perspectives, (3) facilitate self-organization, and (4) set safe boundaries to avoid system thresholds. Through these examples we aim to contribute a basis for further theoretical development, new teaching examples, and inspiration for developing innovative new management strategies in other regions that can help address the considerable sustainability challenges facing society globally.Item Biomass increases go under cover: Woody vegetation dynamics in South African rangelands.(Public Library of Science, 2015-05) Mograbi, P.J.; Erasmus, B.F.N.; Witkowski, E.T.F.; Martin, R.E.; Main, R.; Asner, G.P.; Wessels, K.J.; Mathieu, R.; Knapp, D.E.Woody biomass dynamics are an expression of ecosystem function, yet biomass estimates do not provide information on the spatial distribution of woody vegetation within the vertical vegetation subcanopy. We demonstrate the ability of airborne light detection and ranging (LiDAR) to measure aboveground biomass and subcanopy structure, as an explanatory tool to unravel vegetation dynamics in structurally heterogeneous landscapes. We sampled three communal rangelands in Bushbuckridge, South Africa, utilised by rural communities for fuelwood harvesting. Woody biomass estimates ranged between 9 Mg ha-1 on gabbro geology sites to 27 Mg ha-1 on granitic geology sites. Despite predictions of woodland depletion due to unsustainable fuelwood extraction in previous studies, biomass in all the communal rangelands increased between 2008 and 2012. Annual biomass productivity estimates (10-14% p.a.) were higher than previous estimates of 4% and likely a significant contributor to the previous underestimations of modelled biomass supply. We show that biomass increases are attributable to growth of vegetation <5 m in height, and that, in the high wood extraction rangeland, 79% of the changes in the vertical vegetation subcanopy are gains in the 1-3m height class. The higher the wood extraction pressure on the rangelands, the greater the biomass increases in the low height classes within the subcanopy, likely a strong resprouting response to intensive harvesting. Yet, fuelwood shortages are still occurring, as evidenced by the losses in the tall tree height class in the high extraction rangeland. Loss of large trees and gain in subcanopy shrubs could result in a structurally simple landscape with reduced functional capacity. This research demonstrates that intensive harvesting can, paradoxically, increase biomass and this has implications for the sustainability of ecosystem service provision. The structural implications of biomass increases in communal rangelands could be misinterpreted as woodland recovery in the absence of three-dimensional, subcanopy information.Item Identifying space use at foraging arena scale within the home ranges of large herbivores.(Public Library of Science, 2015-06) Owen-Smith, N.; Martin, J.An intermediate spatiotemporal scale of food procurement by large herbivores is evident within annual or seasonal home ranges. It takes the form of settlement periods spanning several days or weeks during which foraging activity is confined to spatially discrete foraging arenas, separated by roaming interludes. Extended by areas occupied for other activities, these foraging arenas contribute towards generating the home range structure. We delineated and compared the foraging arenas exploited by two African large herbivores, sable antelope (a ruminant) and plains zebra (a non-ruminant), using GPS-derived movement data. We developed a novel approach to specifically delineate foraging arenas based on local change points in distance relative to adjoining clusters of locations, and compared its output with modifications of two published methods developed for home range estimation and residence time estimation respectively. We compared how these herbivore species responded to seasonal variation in food resources and how they differed in their spatial patterns of resource utilization. Sable antelope herds tended to concentrate their space use locally, while zebra herds moved more opportunistically over a wider set of foraging arenas. The amalgamated extent of the foraging arenas exploited by sable herds amounted to 12-30 km2, compared with 22-100 km2 for the zebra herds. Half-day displacement distances differed between settlement periods and roaming interludes, and zebra herds generally shifted further over 12h than sable herds. Foraging arenas of sable herds tended to be smaller than those of zebra, and were occupied for period twice as long, and hence exploited more intensively in days spent per unit area than the foraging arenas of zebra. For sable both the intensity of utilization of foraging arenas and proportion of days spent in foraging arenas relative to roaming interludes declined as food resources diminished seasonally, while zebra showed no seasonal variation in these metrics. Identifying patterns of space use at foraging arena scale helps reveal mechanisms generating the home range extent, and in turn the local population density. Thereby it helps forge links between behavioural ecology, movement ecology and population ecology.Item Evidence for climate-induced range shift in Brachystegia (miombo) woodland.(Academy of Science of South Africa (ASSAf), 2015-07) Pienaar, B.; Thompson, D.I.; Erasmus, B.F.N.; Hill, T.R.; Witkowski, E.T.F.Brachystegia spiciformis Benth. is the dominant component of miombo, the sub-tropical woodlands which cover 2.7 million km2 of south-central Africa and which is coincident with the largest regional centre of endemism in Africa. However, pollen records from the genus Brachystegia suggest that miombo has experienced rapid range retraction (∼450 km) from its southernmost distributional limit over the past 6000 years. This abrupt biological response created an isolated (by ∼200 km) and incomparable relict at the trailing population edge in northeast South Africa. These changes in miombo population dynamics may have been triggered by minor natural shifts in temperature and moisture regimes. If so, B. spiciformis is likely to be especially responsive to present and future anthropogenic climate change. This rare situation offers a unique opportunity to investigate climatic determinants of range shift at the trailing edge of a savanna species. A niche modelling approach was used to produce present-day and select future B. spiciformis woodland ecological niche models. In keeping with recent historical range shifts, further ecological niche retraction of between 30.6% and 47.3% of the continuous miombo woodland in Zimbabwe and southern Mozambique is predicted by 2050. Persistence of the existing relict under future climate change is plausible, but range expansion to fragmented refugia in northeast South Africa is unlikely. As Brachystegia woodland and associated biota form crucial socio-economic and biodiversity components of savannas in southern Africa, their predicted further range retraction is of concern.Item How rainfall variation influences reproductive patterns of African Savanna ungulates in an equatorial region where photoperiod variation is absent.(Public Library of Science, 2015-08) Ogutu, J.O.; Owen-Smith, N.; Piepho, H.-P.; Dublin, H.T.In high temperate latitudes, ungulates generally give birth within a narrow time window when conditions are optimal for offspring survival in spring or early summer, and use changing photoperiod to time conceptions so as to anticipate these conditions. However, in low tropical latitudes day length variation is minimal, and rainfall variation makes the seasonal cycle less predictable. Nevertheless, several ungulate species retain narrow birth peaks under such conditions, while others show births spread quite widely through the year. We investigated how within-year and between-year variation in rainfall influenced the reproductive timing of four ungulate species showing these contrasting patterns in the Masai Mara region of Kenya. All four species exhibited birth peaks during the putative optimal period in the early wet season. For hartebeest and impala, the birth peak was diffuse and offspring were born throughout the year. In contrast, topi and warthog showed a narrow seasonal concentration of births, with conceptions suppressed once monthly rainfall fell below a threshold level. High rainfall in the previous season and high early rains in the current year enhanced survival into the juvenile stage for all the species except impala. Our findings reveal how rainfall variation affecting grass growth and hence herbivore nutrition can govern the reproductive phenology of ungulates in tropical latitudes where day length variation is minimal. The underlying mechanism seems to be the suppression of conceptions once nutritional gains become insufficient. Through responding proximally to within-year variation in rainfall, tropical savanna ungulates are less likely to be affected adversely by the consequences of global warming for vegetation phenology than northern ungulates showing more rigid photoperiodic control over reproductive timing.Item Herbivore population regulation and resource heterogeneity in a stochastic environment.(Ecological Society of America, 2015-08) Hempson, G.P.; Illius, A.W.; Hendricks, H.H.; Bond, W.J.; Vetter, S.Large-mammal herbivore populations are subject to the interaction of internal density-dependent processes and external environmental stochasticity. We disentangle these processes by linking consumer population dynamics, in a highly stochastic environment, to the availability of their key forage resource via effects on body condition and subsequent fecundity and mortality rates. Body condition and demographic rate data were obtained by monitoring 500 tagged female goats in the Richtersveld National Park, South Africa, over a three-year period. Identifying the key resource and pathway to density dependence for a population allows environmental stochasticity to be partitioned into that which has strong feedbacks to population stability, and that which does not. Our data reveal a densitydependent seasonal decline in goat body condition in response to concomitant densitydependent depletion of the dry-season forage resource. The loss in body condition reduced density-dependent pregnancy rates, litter sizes, and pre-weaning survival. Survival was lowest following the most severe dry season and for juveniles. Adult survival in the late-dry season depended on body condition in the mid-dry season. Population growth was determined by the length of the dry season and the population size in the previous year. The RNP goat population is thereby dynamically coupled primarily to its dry-season forage resource. Extreme environmental variability thus does not decouple consumer resource dynamics, in contrast to the views of nonequilibrium protagonists.Item Systematic land-cover change in KwaZulu-Natal, South Africa: Implications for biodiversity.(Academy of Science of South Africa (ASSAf), 2015-09) Jewitt, D.; Goodman, P.S.; Erasmus, B.F.N.; O'Connor, T.G.; Witkowski, E.T.F.Land-cover change and habitat loss are widely recognised as the major drivers of biodiversity loss in the world. Land-cover maps derived from satellite imagery provide useful tools for monitoring land-use and land-cover change. KwaZulu-Natal, a populous yet biodiversity-rich province in South Africa, is one of the first provinces to produce a set of three directly comparable land-cover maps (2005, 2008 and 2011). These maps were used to investigate systematic land-cover changes occurring in the province with a focus on biodiversity conservation. The Intensity Analysis framework was used for the analysis as this quantitative hierarchical method addresses shortcomings of other established land-cover change analyses. In only 6 years (2005-2011), a massive 7.6% of the natural habitat of the province was lost to anthropogenic transformation of the landscape. The major drivers of habitat loss were agriculture, timber plantations, the built environment, dams and mines. Categorical swapping formed a significant part of landscape change, including a return from anthropogenic categories to secondary vegetation, which we suggest should be tracked in analyses. Longer-term rates of habitat loss were determined using additional land-cover maps (1994, 2000). An average of 1.2% of the natural landscape has been transformed per annum since 1994. Apart from the direct loss of natural habitat, the anthropogenically transformed land covers all pose additional negative impacts for biodiversity remaining in these or surrounding areas. A target of no more than 50% of habitat loss should be adopted to adequately conserve biodiversity in the province. Our analysis provides the first provincial assessment of the rate of loss of natural habitat and may be used to fulfil incomplete criteria used in the identification of Threatened Terrestrial Ecosystems, and to report on the Convention on Biological Diversity targets on rates of natural habitat loss.Item Spatially nested niche partitioning between syntopic grazers at foraging arena scale within overlapping home ranges.(Ecological Society of America, 2015-09) Owen-Smith, N.; Martin, J.; Yoganand, K.Niche separation among species with similar resource requirements can be expressed at various spatiotemporal scales, from the resource components selected at feeding sites to habitat and home range occupation and ultimately geographic distribution ranges. African large herbivores present a challenge to niche theory because multiple species commonly overlap both spatially and in vegetation components consumed. Aided by GPS telemetry, we investigated the space use patterns of two large grazers that are frequently associated in mixed-species aggregations. Specifically, we compared a generalist grazer with hindgut fermentation (plains zebra) with a similar-sized grazing ruminant (blue wildebeest) in west-central Kruger National Park, South Africa. We found that herds of the two species overlapped substantially in the home ranges that they occupied, but exploited spatially distinct foraging arenas for periods lasting several days or weeks within these ranges. Moreover, wildebeest and zebra differed in duration of settlement, extent of areas occupied during settlement, consequent exploitation intensity per unit area, proportion of time spent within foraging arenas relative to roaming interludes, and movement rates while within these arenas. In particular, wildebeest herds concentrated within small areas for prolonged periods, while zebra herds used more foraging arenas but exploited them for briefer periods. Both species overlapped substantially in habitat use, although wildebeest more strongly favored gabbro uplands and sodic sites presenting short grass lawns while zebra made greater use of areas with a taller grass cover. Hence resource partitioning was expressed mainly through behavioral distinctions in patch exploitation at foraging arena scale rather than in home range or habitat separation. Although zebra may have been partially excluded from the grasslands kept short by wildebeest, these sites formed only a small part of the wider ranges utilized by zebra, thereby restricting the competitive consequences. Hence spatially nested resource partitioning of this form contributes to the coexistence of these two grazers, and may be a mechanism enabling niche separation among other species.
- «
- 1 (current)
- 2
- 3
- »