Electronic Theses and Dissertations (Masters)
Permanent URI for this collection
Browse
Browsing Electronic Theses and Dissertations (Masters) by SDG "SDG-9: Industry, innovation and infrastructure"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item A Comparative Study of the Efficiencies of Vertical Bracing Practices(University of the Witwatersrand, Johannesburg, 2023-11) Saunders, Shawn Wayne Valintino; Elvin, AlexThe efficiencies of cross sections and configurations applied to vertical bracing are investigated by evaluating reference configurations (RCs), composed of cross braced circular hollow section (CHS) members, against comparative configurations (CCs), consisting of cross-braced Angle members, and single-CHS members. The metrics used to evaluate efficiencies were mass, raw materials costs, and fabrication and erection costs. CCs were found to be more efficient than RCs for most analysed cases, metric and configuration dependent. The following results were found: i. Mass metric a. Crossed-Angle more efficient in 79% of analysed cases. b. Single CHS more efficient in 87% of analysed cases. ii. Raw materials costs metric a. Crossed-Angle more efficient in 92% of analysed cases b. Single CHS more efficient in 88% of analysed cases iii. Fabrication and erection costs metric a. Crossed-Angle more efficient in 90.4% of analysed cases b. Single CHS more efficient in 88.5% of analysed cases Inversions of the efficiency parameter findings, with RCs more efficient than CCs, were observed when: i. RC CHS member slenderness ratios were less than 80-90. ii. CC design loads were greater than 225 kN, 1200 kN and 1500 kN for mass, raw materials and total cost efficiency metrics, respectivelyItem Developing of a parametrically resonw1t vibrating screen, modelling, simulation and dynamic testing(University of the Witwatersrand, Johannesburg, 2023-07) Mohanlal, Mishal; Li, KuinianA novel coupled spring pendulum vibrating screen is proposed with the goal of developing efficient screening using parametric resonance. A simple spring pendulum is initially studied to provide the basis of the dissertation. The theoretical model of the proposed vibrating screen is developed using Lagrangian mechanics which includes damping and generalized forces. Two derivations of the vibrating screen are proposed, the first being a 4DOF (degree of freedom) system and the second being a 3DOF system. The 3DOF system is found to present better numerical stability and is thus utilized for the study. It is shown that the 3DOF system is comparable to the simple spring pendulum for the case where initial conditions are applied to similar coordinates. The proposed vibrating screen presents motion which is not indicative of traditional vibrating screens. It is found that a system where attributes are sized for parametric resonance requires far smaller excitation forces to achieve higher accelerations and displacements compared to traditional vibrating screens. The proposed vibrating screen is an unfeasible design due to the large displacements; high foundation loads and limitations on mechanical components. Discrete element method (DEM) simulations of the proposed vibrating screen are performed to study the efficiency with varying inclinations of the mesh deck. The results are compared to a linear motion vibrating screen. The proposed screen requires far less energy compared to traditional vibrating screens and achieves higher efficiencies with larger deck inclinations. The derived differential equations are verified by experimental testing using free vibrations. The numerical simulations and experimental tests present a good correlation. Signal processing is implemented to compare the natural frequencies from the experimental testing and numerical simulations, the results present a good correlation.