School of Chemistry (ETDs)
Permanent URI for this community
Browse
Browsing School of Chemistry (ETDs) by SDG "SDG-9: Industry, innovation and infrastructure"
Now showing 1 - 4 of 4
Results Per Page
Sort Options
Item Diastereoselective conjugate addition reactions using diverse nucleophiles on a variety of Morita-Baylis-Hillman (MBH) adducts(University of the Witwatersrand, Johannesburg, 2023-09) Bhom, Nafisa; Bode, Moira L.The Morita-Baylis-Hillman (MBH) reaction involves the formation of a new carbon-carbon bond, generating an MBH adduct. These MBH adducts are multi-functional molecules, which can be used as synthons for the generation of complex and diverse compounds. The first part of the work described here involved the synthesis of a series of diverse ester and nitrile MBH adducts obtained as racemic mixtures. The MBH adducts were protected using different protecting groups, which could potentially control the diastereoselectivity and the formation of alternative products in the subsequent conjugate addition reaction. Conjugate addition reactions were performed on the protected MBH adducts using different nucleophiles to obtain the product as diastereomers. These reactions were monitored to detect whether diastereomers were obtained or not. The diastereomeric ratios obtained using different substrates, protecting groups and nucleophiles were determined. The best diastereomeric ratio was 3:1, obtained for the piperidine and benzylamine addition on the TBDMS protected nitrile adducts 192a/b and 196a/b. The addition of sulfur nucleophiles gave the conjugate addition product only and the addition of nitrogen nucleophiles gave both conjugate addition and allylic substitution products. It was found that the protecting groups did not have an effect on the diastereomeric ratio obtained, nor on the formation of alternative products. The last step performed in the sequence was the deprotection of the conjugate addition products. The configuration of the major and the minor diastereomers were determined, the major product was assigned as the syn diastereomer. The major:minor diastereomeric ratio for compound 208a/b was 3:1 and for compound 209a/b, a ratio of 2:1 was obtained. The next part of the work involved the synthesis of MBH adducts with amide as the electron withdrawing group. The originally proposed route involved the synthesis of MBH esters and their conversion into amides. The conjugate addition reactions were attempted on these amide adducts, but were unsuccessful. A number of alternative routes were attempted for the synthesis of amide adducts and conjugate addition products resulting from these adducts. From all the alternative routes, the best route was the originally proposed route.Item Dissolution of non-functionalized and functionalized nanomaterials in simulated biological and environmental fluids(University of the Witwatersrand, Johannesburg, 2023-06) Mbanga, Odwa; Gulumian, Mary; Cukrowska, EwaThe incorporation of nanoparticles in consumer products is exponentially high, however, research into their behaviour in biological and environmental surroundings is still very limited. In the present study, the static system and the continuous flow-through dissolution protocols were utilized to evaluate and elucidate the dissolution behaviour of gold, silver, and titanium dioxide nanoparticles. The behaviour of these particles was studied in a range of artificial physiological fluids and environmental media, to obtain a more precise comprehension of how they would react in the human body and the environment. The biodurability and persistence were estimated by calculating the dissolution kinetics of the nanoparticles in artificial physiological fluids and environmental media. The details of the current research are described as follows: An investigation into the dissolution of non-functionalized and functionalized gold nanoparticles was conducted as the first component of the research, examining the effect of surface functionalization on dissolution. The study determined the dissolution rates of functionalized and non-functionalized gold nanoparticles. Dissolution was observed to be significantly higher in acidic media than in alkaline media. The nanoparticle surface modification, particle aggregation, and chemical composition of the simulated fluid significantly affected the dissolution rate. It was concluded that gold nanoparticles are biodurable and have the potential to cause long-term health effect as well as high environmental persistency. This work has been published in the Journal of Nanoparticle Research and is presented in this thesis as Paper 1. Silver nanoparticles were also included in this study because they have many applications and industrial purposes. Therefore, their risk assessment was also of utmost importance. The results indicated that silver nanoparticle solubility was influenced by the alkalinity and acidity of artificial media. Low pH values and high ionic strength encouraged silver nanoparticle dissolution and accelerated the dissolution rate. The agglomeration state and reactivity of the particles changed upon exposure to simulated fluids, though their shape remained the same. The fast dissolution rates in most fluids indicated that the release of silver ions would cause short-term effects. This work has been published in Toxicology Reports and has been presented in this thesis as Paper 2. Although titanium dioxide nanoparticles are insoluble and undergo negligible dissolution, it was of utmost importance to investigate their behaviour in biological and environmental surroundings. This is as a result of the incorporation of these particles in everyday consumer products, in the nanosized range which raises concerns about their safety. Therefore, in Paper 3 presented in this thesis the dissolution kinetics of titanium dioxide nanoparticles in simulated body fluids representative of the lungs, stomach, blood plasma and media representing the aquatic ecosystem were investigated to anticipate how they behave in vivo. This work has been published in Toxicology In Vitro and presented in this thesis as Paper 3. The results indicated that titanium dioxide nanoparticles were very insoluble, and their dissolution was limited in all simulated fluids. Acidic media such as the synthetic stomach fluids were most successful in dissolving the particles, while alkaline media had lower dissolution. High ionic strength seawater also had a higher dissolution rate than freshwater. The dissolution rates of the particles were low, and their half-times were long. The results indicated that these particles could potentially cause health issues in the long term, as well as remain unchanged in the environment. This work has been published in Toxicology In Vitro and presented in this thesis as Paper 3. The last component of the research compared the dissolution kinetics of gold, silver and titanium dioxide nanoparticles through the use of the continuous flow-through system. The findings indicated that titanium dioxide nanoparticles were the most biodurable and persistent, followed by gold and silver nanoparticles. Therefore, it was suggested that product developers should use the OECD's guidelines for testing before releasing their product to the market to ensure its safety. This work has been published in Nanomaterials MDPI and presented in this thesis as Paper 4.Item Imputation of missing values and the application of transfer machine learning to predict water quality in acid mine drainage treatment plants(University of the Witwatersrand, Johannesburg, 2024) Hasrod, TaskeenAccess to clean water is one of the most difficult challenges of the 21st century. Natural unpolluted water bodies are becoming one of the most dramatically declining resources due to environmental pollution. In countries like South Africa which has a mining-centred economy, toxic pollution from mine tailing dumps and unused mines leach into the underground water table and contaminate it. This is known as Acid Mine Drainage (AMD) and poses a grave threat to humans, animals and the environment due to its toxic element and acidic content. It is, therefore, imperative that sustainable wastewater treatment procedures be put in place in order to decrease the toxicity of the AMD such that clean water may be recovered. An efficient circular economy is created in the process since original wastewater can be recycled to not only provide clean water, but also valuable byproducts such as sulphur (from the elevate sulphate content) and other important minerals. Traditional analytical chemistry methods used to measure sulphate are usually time-consuming, expensive and inefficient, thereby, leading to incomplete analytical results being reported. To address this, this study aimed at imputing missing values for sulphate concentrations in one AMD treatment plant dataset and then using that to conduct transfer learning to predict concentrations in two other AMD treatment plants datasets. The approach involved using historical water data and applying geochemical modelling as a thermodynamical tool to assess the water chemistry and conduct preliminary data cleaning. Based on this, Machine Learning (ML) was then used to predict the sulphate concentrations, thus, addressing limited data on this parameter in the datasets. With complete and accurate sulphate concentrations, it is possible to conduct further modelling and experimental work aimed at recovering important minerals such as octathiocane, S8 (a commercial form of sulphur), gypsum and metals. Historical data obtained from the three AMD treatment plants in Johannesburg, South Africa (viz., Central Rand, East Rand and West Rand) were obtained and the larger Central Rand dataset was split into smaller untreated AMD (Pump A and Pump B) subsets. Thermodynamic and solution equilibria aspects of the water were assessed using the PHREEQC geochemical modelling code. This served as a preliminary data cleanup step. Eight baseline as well as three ensemble machine learning regression models were trained on the Central Rand subsets and compared to each other to find the best performing model that was then used to conduct Transfer Learning (TL) onto the East Rand and West Rand datasets to predict their sulphate levels. The findings pointed to a high correlation of sulphate to temperature (°C), Total Dissolved Solids (mg/L) and most importantly, iron (mg/L). The linear correlation between iron and sulphate substantiated pyrite (FeS2) as their source following weathering. Water quality parameters were found to be dependent on factors such as weather and geography this was evident in the treated water that had quite different chemistry to that of the untreated AMD. Neutralisation agents used were based on those parameters, thus, further delineating the chemistry of the treated and untreated water. The best performing ML model was the Stacking Ensemble (SE) regressor trained on Pump B’s data and combined the best performing models namely, Linear Regressor (LR), Ridge Regressor (RD), K-Nearest Neighbours Regressor (KNNR), Decision Tree Regressor (DT), Extreme Gradient Boosting Regressor (XG), Random Forest Regressor (RF) and Multi-Layer Perceptron Artificial Neural Network Regressor (MLP) as the level 0 models and LR as the level 1 model. Level 0 consisted of training heterogenous base models to obtain the crucial features from the dataset. These individual predictions and features were then fed to a single meta-learner model in in the next layer (level 1) to generate a final prediction. The stacking ensemble model performed well and achieved Mean Squared Error (MSE) of 0.000011, Mean Absolute Error (MAE) of 0.002617 and R2 of 0.999737 in under 2 minutes. This model was selected to be used for TL to the East Rand and West Rand datasets. Ensemble methods (bagging, boosting and stacking) outperformed individual baseline models. However, when comparing stacking ensemble ML that combined all the baseline models with stacking ensemble ML that only combined the best performing models, it was found that there was no significant improvement in excluding bad models from the stack as long as the good models were included. In one case, it was actually beneficial to include the bad performing models. All models were trained in under 2 minutes which proved the benefit of using ML approaches compared to traditional approaches. The treated water data was highly uncorrelated such that model training was unsuccessful with the highest achievable R2 value being 0.14, thus, no treated water model was available for TL. TL was successfully conducted on the cleaned and modelled East Rand AMD dataset using the Central Rand (Pump B) stacking regressor and a high level of accuracy with respect to Mean Square Error (MSE), Mean Absolute Error (MAE) and R2 (MSE:0.00124, MAE:0.0290 and R2:0.963) between the predicted and true sulphate values was achieved. This was achieved despite a marked difference in the distributions between the Central Rand and East Rand datasets which further proved the power of utilizing ML for water data. TL was successful in imputing missing values in the West Rand dataset following prediction of sulphate levels in the cleaned and modelled West Rand AMD and treated water datasets. No true values for sulphate levels in the West Rand dataset were given, as such, accuracy comparisons could not be made. However, a general baseline idea of the amount of sulphate present in the West Rand treatment plant could now be understood. The sulphate levels in all three treatment plants (Central Rand, East Rand and West Rand) were found to greatly differ from each other with the Central Rand having the most normal distribution, the East Rand having the most precise distribution and the West Rand having the most variable distribution. Whilst the sulphate levels in the treated effluent waters could not be reliably predicted due to inherent issues (e.g., analytical inaccuracies and inconsistences) and poor correlations within the treated water datasets, sulphate levels in all three of the untreated AMD datasets were successfully predicted with a high degree of accuracy. This underpinned the observation made previously about the discrepancies between treated and untreated water. The study has shown that it is possible to impute missing values in one water dataset and use transfer learning to complete and consolidate another similar, but scarce, dataset(s). This approach has been lacking in the water industry, resulting in the reliance and use of traditional methods that are expensive and inadequate. This has caused water practitioners to abandon scarce datasets, thus, losing potentially valuable information that could be useful for water remediation and recovery of valuable resources from the water. As a spin off from the study, it has been indicated that automation of such data analysis is possible. This was achieved by developing a Graphical User Interface (GUI) for ease of use of the SE-ML model by those with little to no programming background nor ML knowledge e.g., the laboratory staff at the AMD treatment plants. This can also be used for teaching purposesin academia.Item Manganese-Rich Nickel-Manganese-Cobalt Oxides as Hybrid Supercapacitor Electrode Materials(University of the Witwatersrand, Johannesburg, 2023-09) Tshivhase, Funanani; Ozoemena, Kenneth IkechukwuFossil fuels used as the conventional energy source play a substantial negative role in climatic changes and global warming. Their reservoirs on earth keep getting constrained, thus limiting their reliability. These issues make renewable energy sources an excellent alternative due to their abundance, environmental safety, affordability, and renewability. However, renewable energy is subjected to geographic limitations, and some sources are intermittent, which can be solved by applying energy storage devices. Asymmetric hybrid supercapacitors are an excellent choice due to the safety of aqueous electrolytes, exploitation of abundant metals in the metal oxides used, improvement of power and energy density and simple assembly and application. In this work, manganese-rich nickel-manganese-cobalt (MR-NMC) was studied and applied in asymmetric hybrid supercapacitors as a cathode material, and reduced graphene oxide (rGO) was used as an anode. Synthesis was done using co-precipitation-(Conv), laminar Taylor vortex flow reactor-(Lam), and microwave irradiation-(MW) approaches. Physical characterization was performed using XRD and TEM. Electrochemical studies were done using CV, GCD and EIS. Three full cells/two electrode systems were assembled and studied. Those cells were rGO//Conv MR-NMC, rGO//Lam MR-NMC and rGO//MW MR-NMC. The data obtained from electrochemistry tests was used for the calculations of specific capacitance, energy and power densities. rGO//MW MR-NMC cell had the highest specific capacitance response compared to rGO//Conv MR-NMC and rGO//Lam MR-NMC over the entire current density range used, where at the current density of 0.2 A g-1, rGO//MW MR-NMC had 44.77 F g-1, followed by rGO//Lam MR-NMC with 15,89 F g-1, then rGO//Conv MR-NMC with 13.68 F g-1. There was no significant difference in the specific capacitance responses of rGO//Conv MR-NMC and rGO//Lam MR-NMC. rGO//MW MR-NMC also exhibited higher energy density for the entire range of power density over rGO//Conv MR-NMC and rGO//Lam MR NMC. At the power density of 678,08 W kg-1, rGO//MW MR NMC had a specific energy density of 65 Wh kg-1, followed by rGO//Lam MR NMC with 23.45 Wh kg-1, then rGO//Conv MR-NMC with 19.82 Wh kg-1. Overall, the electrochemistry and the calculated perimeters thereafter showed that microwave irradiation is a reliable approach that can be used in the preparation of metal oxides used in energy storage devices for the improvement of electrochemical performance, which potentially enables the commercialization of these systems and management of energy crisis in South Africa, Africa and the world as a whole, hence the rGO//MW MR-NMC material performed better than the other two.