Electronic Theses and Dissertations (PhDs)
Permanent URI for this collection
Browse
Browsing Electronic Theses and Dissertations (PhDs) by SDG "SDG-13: Climate action"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
Item Extreme weather events and human health in South Africa: implications for climate services(University of the Witwatersrand, Johannesburg, 2022) Manyuchi, Albert Edgar; Erasmus, Barend; Wright, Caradee; Vogel, ColeenExtreme weather events (EWEs), defined as ‘weather events that are rare at a particular place and time of the year’, have increasingly been affecting many countries worldwide (IPCC 2014). The increased occurrence and intensity of EWEs, among other factors, has increased public interest and demand for climate information. More detail is needed on EWEs and how they can be more effectively coupled to climate services in Africa. This study brings a compendium of empirical evidence, conceptual clarity and transdisciplinary approaches to policymakers, researchers and practitioners dealing with these crucial issues. The main aim of this study is to explore the human health effects of EWEs, particularly heat and the delivery of climate services for health in Africa. Through a systematic review, the study examines the potential impacts of heat on human health in Africa. Using a case study approach heathealth effects are evaluated including the status of climate services in the Agincourt subdistrict of South Africa. A novel systems theory-based conceptual framework and an inclusive analytical framework are employed to explore climate services delivery within the context of climate change adaptation. The study produces two main findings. First, EWEs particularly heat, potentially affects human health in Africa by changing mortality and morbidity patterns. In the Agincourt sub-district in particular, heat may be associated with adverse health effects on vulnerable populations, including inter alia the elderly, children and outdoor workers. Despite this, Africa-specific heat-health interventions and policy suggestions are scarce. Second, climate services are generally in embryonic stages of development and climate services for health in Agincourt subdistrict are non-existent. Within the South African context, the main barriers to delivery of climate services for health are paucity of interagency coordination and gaps in meteorological data. One of the key conclusions of the study is that African countries can promote development of climate services to adapt to EWEs such as heat. Heat, and heatwaves, for example, are already affecting populations, and are projected to increase in frequency and intensity with concomitant adverse effects on health outcomes on vulnerable population groups. The three key recommendations from this study are as follows. First, African policymakers and practitioners must avoid a reductionist approach to analysis of EWEs, especially heat impacts and start viewing these as harmful to human health. Therefore, governments must prioritise interventions, create institutions and formulate policy measures to deal with the health effects of heat within their national adaptations plans. Second, African countries must prioritise policy mixes that promote climate services in general and climate services for health in particular. And finally, further policy-science research that generates empirical evidence for African policymakers and practitioners engaged in international negotiations and programmes for climate change adaptation and climate services should be encouraged.Item South African Podocarpaceae distribution interpreted from a physiological and population genetics perspective(University of the Witwatersrand, Johannesburg, 2023-09) Twala, Thando Caroline; Fisher, Jolene T.; Glennon, Kelsey L.Podocarpaceae (podocarp) are the most diverse conifer family with a Southern Hemisphere distribution. Podocarps occur in Afrotemperate and Afromontane forests at high elevations that are cool and humid. Podocarps once dominated the forest canopy but due to their slower growth rate and photosynthetic rates they have are in competition withangiosperms which have faster growing and higher photosynthetic rate. Due to the competition between podocarps and angiosperms, Bond (1989) proposed that podocarps were excluded to nutrient poor and unfavourable environments due to their limited competitive ability. However, podocarps persist under the forest canopy until conditions become favourable. This power dynamic shifts with climate oscillations where podocarps distributions expand and dominate when conditions become cooler. Owing to podocarps being the most diverse and widespread conifers they make for a good study system. This thesis focuses on understanding the climatic variables driving the current and future distribution of podocarps, how their seedling physiology may influence their ability to recruit and establish under climate change, and how this can influence their ability to disperse in their South African distribution. Ensemble species distribution modelling was used to characterise the current and future distribution of podocarps and identify the climatic variables that influence their distribution. The current and future environmental niche was quantified using environmental niche modelling. I found that variables predicting rainfall seasonality were the most important at determining the distribution of podocarps in South Africa. Afrocarpus falcatus and P. latifolius were predicted to have the largest geographic distribution, with P. henkelii and P. elongatus having restricted distributions. Both A. falcatus and P. latifolius were predicted to occur in the Limpopo, Mpumalanga, KwaZulu-Natal, Eastern Cape and Western Cape provinces of South Africa. Podocarpus henkelii was predicted to occur in the KwaZulu-Natal and Eastern Cape provinces. Podocarpus elongatus is endemic to the Western Cape Province. All four podocarps were predicted to expand to higher altitudes (up the escarpment) under climate change and contract in its coastal distribution. Although P. elongatus was predicted to occupy the smallest geographic distribution it was predicted to have the widest environmental niche than the other species, which was predicted to contract under climate change. The environmental niche of P. latifolius and P. henkelii was predicted to remain stable. Afrocarpus falcatus, P. latifolius, and P. henkelii showed niche conservatism, however, P. elongatus under RCP 4.5 → current and the RCP 8.5↔ current niche comparisons showed niche divergence. Podocarpus elongatus was predicted to expand to an environment it currently does not occupy. Ecophysiological and morphological experiments were conducted to understand how podocarp seedlings respond to drought and elevated temperatures. The experiments indicated that P. henkelii seedlings were more drought and heat tolerant than A. falcatus seedlings. Conditions are predicted to become hotter and drier in some parts of South Africa, and this study has shown that P. henkelii seedlings will be able to tolerate these conditions better than A. falcatus seedlings. Furthermore, this suggests that the distribution of P. henkelii is not constrained by its physiology but rather by other mechanisms such as competition, reproductive biology, and/or shade tolerance. Microsatellites were used to inform us about possible podocarp dispersal patterns in A. falcatus, P. latifolius and P. henkelii in South Africa. The results suggested that podocarp populations in South Africa were shown to have higher genetic diversity than other podocarps globally, however these results may be due to the limited number of microsatellites used in this study, smaller population sizes in comparison to other studies and methods used to measure population structure and diversity. As expected, the geographically widespread species (A. falcatus and P. latifolius) are more diverse than the geographically restricted P. henkelii. Geographically distant A. falcatus and P. henkelii populations showed higher differentiation than geographically proximal populations. In P. latifolius South African populations, there was strong isolation by distance. Although the distribution of podocarps is disjunct, there is dispersal between populations. Podocarps are resilient to climate change as was demonstrated by the work in this thesis, and by their paleodistribution expanding and contracting with climate oscillations. In this thesis I considered climate, ecophysiology and genetics as determinants of podocarps distribution. Under climate change, podocarps are predicted to expand to higher elevations to track favourable climatic conditions. Seasonal drought is the most important climatic determinant of podocarp distribution. The ability of these species to tolerate drought and heat stress suggests that the seedlings might be able to tolerate short periods of drought and heat stress, however prolonged exposure may lead to seedling mortality, but populations will then be maintained by adults. Populations show evidence of gene flow, indicating they will be able to persist through changing climates, as they have done in the past. This thesis has highlighted that the factors constraining podocarp distributions might be demographic, and future works should investigate the role of fire in podocarp seedling establishment and longevity, as well as their interactions with angiosperm competitors.Item The past, present and future of cactus invasions in South Africa in response to rising atmospheric CO2 and climate change(University of the Witwatersrand, Johannesburg, 2023) Venter, Nicolaas; Byrne, MarcusCactaceae originate from the Americas and over the past 250 years have been introduced into South Africa and elsewhere for agricultural and horticultural purposes. Numerous species, including useful taxa, have become important invasive weeds that have serious socio-economic and environmental impacts. Fortunately, management strategies, in particular biological control, have been successful in controlling certain species. However, with rising atmospheric CO2 invasive cacti are likely to pose a renewed threat, whereby evidence shows that cactus species are responsive to CO2 fertilisation, which is likely to increase their vigour, mainly through improved water use efficiency (WUE). Additionally, studies show that plant quality declines with increasing CO2 which in general has negative effects on their arthropod herbivores. This study sought to determine the effect of CO2 on two functionally different invasive cactus species and how they may respond to predicted increases in atmospheric CO2. Opuntia stricta (a succulent shrub) is an obligate CAM photosynthetic species that invades grasslands and savannas across semi-arid to subtropical environments whereas Pereskia aculeata (a scrambling woody vine with well-developed leaves) is a CAM-cycling photosynthetic species that invades forest type habits across subtropical environments. Plants were grown at three CO2 concentrations that represented pre-industrial (sub-ambient - 250 ppm), current (ambient - 400 ppm) and future (elevated - 600 ppm) atmospheric CO2 conditions. Plants were also subject to suboptimal and optimal watering treatments for the duration of the experiments to determine the ameliorative effect of CO2 on productivity in response soil moisture deficits. In addition, an experiment was conducted on O. stricta to test the effects of the three CO2 concentrations on plant quality and the subsequent effect on the fitness and efficacy of its insect biological control agent, Dactylopius opuntiae. Growth and productivity of O. stricta and P. aculeata responded positively to increasing CO2, however the responses varied with CO2 concentration. Increasing atmospheric CO2 concentration from date of introduction to present possibly facilitated O. stricta invasion whereas this was less likely for P. aculeata. In both species WUE increased with increasing CO2. Under suboptimal watering, there was partial amelioration of productivity at 600 ppm CO2, but the plant traits that benefitted varied according to species. Plant quality declined for both species, most notably cladode nitrogen (N) content decreased, and carbon/nitrogen ratios (C/N) increased. When D. opuntiae were exposed to O. stricta grown at elevated CO2 (only tested on well-watered plants), D. opuntiae fitness was reduced which in turn reduced the rates of plant mortality due to the insect damage. Using the WUE results from O. stricta, a mechanistic species distribution model (SDM) created here predicted greater increases in its potential distribution in South Africa under climate change relative to the SDM that did not include WUE as a predictor variable. This suggests that improved WUE under future CO2 concentrations can offset the effect of declining rainfall in certain regions of South Africa. Overall, these results suggest that O. stricta and P. aculeata will show more vigorous growth and are also likely to expand their ranges into regions where rainfall currently limits their distribution. This expanded distribution may be further facilitated by reduced biocontrol agent efficacy as host plant quality declines. These findings suggest that management of these two species and other invasive cacti is likely to become more challenging with increasing atmospheric CO2 and climate change.