School of Physics (ETDs)
Permanent URI for this community
Browse
Browsing School of Physics (ETDs) by Faculty "Faculty of Humanities"
Now showing 1 - 1 of 1
Results Per Page
Sort Options
Item Multi-messenger Indirect Dark Matter Searches in Milky Way Satellites(University of the Witwatersrand, Johannesburg, 2023-09) Noorbhai, Raees Mubeen; Beck, GeoffreyFirst suggested 90 years ago, the Dark Matter (DM) mystery has been deepened by a range of astronomical observations, from the galactic to the cosmological scale, demonstrating anomalous gravitational phenomena which necessitate the existence of some unknown DM. In the 1970s, particle DM models, including the WIMP hypothesis considered in this work, were proposed and have subsequently been subjected to empirical scrutiny. Over the past 2 decades, all DM direct detection experiments, collider searches and indirect detection searches have failed to detect a DM signal, placing stringent constraints upon WIMP parameters and ruling out WIMP-Hadron interactions. Following the detection of an excess e−/e + flux at approximately 1.4 TeV by DAMPE in 2017, a number of Massive Leptophilc Majorana Particle (MLMP) WIMP hypotheses were proposed to explain the flux. To conduct a model-independent test of these hypotheses, Leptophilic WIMPs in the 1-2 TeV mass-energy range are considered, accounting for self-Annihilation along all leptonic channels, as well as the 3l democratic case. The dwarf spheroidal galaxies orbiting the Milky Way (MW), particularly the Ultrafaints, are DM-dominated and are thus strong candidates for indirect DM searches using next-generation telescopes - such as CTA in gamma, KM3NeT in neutrinos and MeerKAT in radio, with sensitivities that dwarf those of prior telescopes like LHAASO. Accounting for the respective fields-of-view of these telescopes, 6 dwarf spheroidals, 4 Ultrafaints and 2 Classicals, are chosen as potential target environments for the multi-messenger analysis. Equations are also derived for the Mean Free Path (MFP) and Mean Annihilation Period (MAP) of the WIMPs in the respective DM Halos, for the case of both an arbitrary Halo boundary and at the virial radius boundary. Utilising conservative estimates of telescope sensitivities, non-detection upper bounds are placed upon the Annihilation cross-section ⟨σv⟩ψ and Decay rate Γψ. These bounds are taken in comparison to the bounds imposed by the Super-amiokande neutrino search in the MW Halo and centre, the ATCA radio search in Reticulum II and the ASKAP/EMUradio search in the LMC. In all cases, the non-detection bounds imposed by observations of the Ultra faints are more stringent, but with greater error margins than is the case with the Classicals. For CTA, non-detection bounds in the case of all Ultrafaints are competitive with those imposed by the ASKAP/EMU search and stronger than those imposed by both the ATCA and the Super-Kamiokande searches. For KM3NeT, no novel non-detection bounds are imposed for observations of all 6 dwarf spheroidals. For MeerKAT, in the case of the µ −/µ + channel, observations of Reticulum II are competitive with the ASKAP/EMU bounds. From the multi-messenger analysis, it is concluded that the strongest non-detection bounds are imposed by CTA observations of Segue 1 and MeerKAT observations of Reticulum II. In the Decay case, the bounds are compared to those imposed by the Fermi indirect search in the IGRB. In the case of all next-generation telescopes, no novel non-detection constraints can be imposed upon Γψ . In the case of the MFP and MAP results, the non-detection lower limits are often many orders of magnitude greater the Hubble time. At the relic density limit, the Halo-independent MAP at the virial limit is 14 orders of magnitude greater than the age of the Universe. This illustrates the severe extent to which the Annihilation channel for WIMPs has been suppressed, since successive instances of non-detection have placed tight bounds on ⟨σv⟩ψ . In light of this, proposed astrophysical explanations for the DAMPE flux are favourable, as they do not require the presupposition of WIMP Dark Matter.