School of Molecular & Cell Biology (ETDs)
Permanent URI for this community
Browse
Browsing School of Molecular & Cell Biology (ETDs) by Author "Adams, Taryn Racheal"
Now showing 1 - 1 of 1
Results Per Page
Sort Options
Item Insights into the Physiochemical Properties of the Interaction between the L38↑N↑L+4 HIV-1 Hinge Mutant Subtype C Protease and a Related Gag Cleavage Site(University of the Witwatersrand, Johannesburg, 2023-09) Adams, Taryn Racheal; Sayed, YasienFrequent mutations in HIV protein drug targets such as the protease (PR), have led to a rise in resistance to clinically available treatments and inquiries into the associated biochemical mechanisms. In this study, the L38↑N↑L+4 PR (mutant) and related gag, were isolated from a PR inhibitor naïve child for further study. Wild-type and mutant PRs were successfully overexpressed and purified using ion exchange chromatography. Intrinsic fluorescence studies probing tryptophan residues located at the hinge revealed variations in tertiary structure. This coincided with significant differences in refolding efficiency (mutant PR recovery ~ 10% and wild-type PR recovery ~ 34%). Furthermore, differences in catalytic efficiency (mutant-specific activity ~ 7.4 µmol.min-1.mg-1, mutant kcat ~ 2.71 sec-1; wild-type specific activity ~ 31.6 µmol.min-1.mg-1, kcat ~ 11.60 sec-1). Thermal shift assays revealed reduced mutant PR structural stability (Tm ~ 67 ℃) compared to the wild-type PR (Tm ~ 64 ℃). Furthermore, reduced stability of inhibitor-mutant PR complexes (Tm ~ 73.5 ℃ Acetyl pepstatin (AP), 90 ℃ Darunavir (DRV), and 88 ℃ Saquinavir (SQV)) compared to complexes involving the wild-type PR (Tm ~ 70 ℃ (AP), 82 ℃ (DRV), and 82 ℃ (SQV)). Overall, the L38↑N↑L+4 PR mutations were found to influence the tertiary structure of the hinge, gag processing, and PI stability within the mutant PR active site. Computational docking studies highlighted the potential role of a gag single nucleotide polymorphism (SNP), located at the 4th amino acid (P4) position of the peptide-2-nucleocapsid (p2/NC) gag cleavage site, for future studies as a compensatory mutation aiding PR polymorphisms. Further studies should focus on the gag-PR functional pair to build a more accurate understanding of HIV drug resistance mechanisms.