School of Chemistry (ETDs)
Permanent URI for this community
Browse
Browsing School of Chemistry (ETDs) by Author "Eid, Kamel"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Carbon nitride-based catalysts for thermal carbon monoxide oxidation: Does phase matter?(University of the Witwatersrand, Johannesburg, 2023-06) Mohamed, Ahmed Gamal Abdelmoneim; Ozoemena, Kenneth Ikechukwu; Abdullah, Aboubakr M.; Eid, KamelCarbon monoxide (CO) has a poisonous effect on all living organisms as it binds to the hemoglobin of blood cells, preventing oxygen uptake. Thus, the conversion of CO to less dangerous gas such as CO2 is an essential process. This work presented the utilization of carbon nitrides (C3Nx) in different phases (βgC3N4, βC3N5, βC3N6) for thermal carbon monoxide (CO) oxidation. Herein, gC3N4, C3N5, and C3N6 were prepared by pyrolysis of their amine precursors, which were doped with Fe by two distinct methods; mechanical mixing (Fe/C3Nx-M) and polymerization (Fe/C3Nx-P). The controlled preparation of Fe/gC3N4-P allowed the formation of hierarchical porous structures with high surface area (219 m2/g) compared to the Fe/gC3N4-M (77 m2/g). This enabled the ease of reactants diffusion, enhanced the electron transfer, and maximized the atomic utilization. Accordingly, Fe/gC3N4-P (T100= 245 °C) presented higher catalytic activity than Fe/gC3N4-M (T100= 291 °C). In addition, bimetallic FeTi/gC3N4-P and trimetallic FeTiCu/gC3N4-P catalysts achieved the complete conversion of carbon monoxide (CO) at lower temperatures; 175 and 147 °C, respectively, which was attributed to the enhanced reducibility, and synergistic effect of Ti and Cu. Besides, FeTi/gC3N4-P and FeTiCu/gC3N4-P showed higher catalytic activity than Pd/C commercial catalyst (T100= 198 °C). In addition, the trimetallic FeTiCu/gC3N4-P showed a stable catalytic behavior without any deactivation for more than ten hours. This study showed that the C3Nx phases worked successfully in the thermal catalytic CO oxidation. However, the gC3N4 phase is the most active one when doped with metal(s), as it offered higher crystallinity, graphitization, and thermal stability than C3N5 and C3N6. This study also paves the way for the utilization of gC3N4 as a support for different metals to be used efficiently in various thermal catalytic applications, not only CO Oxidation.Item Tailored Fabrication of MXene/Chitosan Nanocomposites as Efficient Adsorbents for Heavy Metals Removal from Wastewater(University of the Witwatersrand, Johannesburg, 2023-08) Ibrahim, Yassmin Ahmed Ismail; Eid, Kamel; Ozoemena, Kenneth IkechukwuMXene (Ti3C2Tx) has been extensively utilized in water purification systems, including toxic metal ions removal, owing to the unique layered structure and abundant oxygen surface groups. However, challenges such as aggregation and solubility of Ti3C2Tx nanosheets in water have prompted the need for innovative strategies. In this study, we introduce a i3C2Tx-incorporated chitosan matrix (MX/CS) adsorbent designed to address solubility concerns during water treatment. MX/CS adsorbents are tested towards the capture of “cadmium” (Cd 2+) and “Zinc” (Zn2+) ions in aqueous solutions at varied pH values (i.e., acid, neutral and alkaline), initial ions concentrations (25, 50 and 100 ppm), and varied Ti3C2Tx loading (i.e., 1, 5 and 10), to study the optimization adsorption parameters. In addition, the Ti3C2Tx nanosheets were activated/alkalinized at ratio (2:1, i.e., 2MX:OH/CS), where more negative-ions sites are provided, thus, enhancing the preferential sorption for heavy metal ions in terms of high adsorption capacities, and kinetics than the non-activated samples (MX-10/CS). Freundlich isotherms are predominated for the Cd2+ and Zn2+ ions adsorption on both adsorbents. A selectivity study reveals that Zn2+ ions got adsorbed faster on the adsorbents than Cd2+ ions because of its low atomic radii and electronegativity. Finally, the adsorbents will be generated and prepared for additional adsorption cycles to test their stability. The second part of this work is to present the novel fabrication of multifunctional hydrophobic polymeric foam MX nanocomposites for large-scale ultrafast wastewater treatment. Likewise, the foam nanocomposite will be tested for the adoption of multi-ions solution over wide pH rage to demonstrate the applicability of the novel adsorbent for large-scale applications. Overall, this research contributes to the advancement of water treatment technologies by enhancing the stability of MXene-based adsorbents and introducing an innovative fabrication method for hydrophobic polymeric foam MX nanocomposites. The outcomes demonstrate the applicability of these novel adsorbents for efficient and scalable water purification solutions.