A machine learning approach towards assessing consistency and reproducibility an application to graft survival across three kidney transplantation eras
dc.article.end-page | 21 | en |
dc.article.start-page | 1 | en |
dc.citation.doi | 10.3389/FDGTH.2024.1427845 | en |
dc.contributor.author | Okechinyere Achilonu | en |
dc.contributor.author | G Obaido | en |
dc.contributor.author | B Ogbuokiri | en |
dc.contributor.author | K Aruleba | en |
dc.contributor.author | Eustasius Musenge | en |
dc.contributor.author | June Fabian | en |
dc.date.accessioned | 2024-11-19T09:06:54Z | |
dc.date.available | 2024-11-19T09:06:54Z | |
dc.faculty | FACULTY OF HEALTH SCIENCES | en |
dc.identifier.citation | SCOPUS | en |
dc.identifier.uri | https://hdl.handle.net/10539/42716 | |
dc.journal.title | A machine learning approach towards assessing consistency and reproducibility an application to graft survival across three kidney transplantation eras | en |
dc.journal.volume | 6 | en |
dc.title | A machine learning approach towards assessing consistency and reproducibility an application to graft survival across three kidney transplantation eras | en |
dc.type | Journal Article | en |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- Journal Article.pdf
- Size:
- 5.42 MB
- Format:
- Adobe Portable Document Format
- Description:
- Bitstream uploaded by REST Client