Machine learning approach and geospatial analysis to determine HIV infection awareness status and transmission knowledge among adults in SubSaharan Africa
dc.article.end-page | 9 | en |
dc.article.start-page | 1 | en |
dc.citation.doi | 10.1186/S13104-024-07053-7 | en |
dc.contributor.author | A Endawkie | en |
dc.contributor.author | B. A Miheretu | en |
dc.contributor.author | Anteneh Yalew | en |
dc.contributor.author | P Nyasulu | en |
dc.contributor.author | G Worku | en |
dc.contributor.author | A Asaminew | en |
dc.contributor.author | B. A Hailu | en |
dc.date.accessioned | 2025-03-07T07:18:40Z | |
dc.faculty | FACULTY OF HEALTH SCIENCES | en |
dc.identifier.citation | SCOPUS | en |
dc.identifier.uri | https://hdl.handle.net/10539/44126 | |
dc.journal.title | Machine learning approach and geospatial analysis to determine HIV infection awareness status and transmission knowledge among adults in SubSaharan Africa | en |
dc.journal.volume | 17 | en |
dc.title | Machine learning approach and geospatial analysis to determine HIV infection awareness status and transmission knowledge among adults in SubSaharan Africa | en |
dc.type | Journal Article | en |
Files
Original bundle
1 - 1 of 1
- Name:
- Journal Article.pdf
- Size:
- 2.48 MB
- Format:
- Adobe Portable Document Format
- Description:
- Bitstream uploaded by REST Client