Predicting the hardgrove grindability index using interpretable decisiontreebased machine learning models

dc.article.end-page16en
dc.article.start-page1en
dc.citation.doi10.1016/J.FUEL.2024.133953en
dc.contributor.authorY Chenen
dc.contributor.authorM Khandelwalen
dc.contributor.authorm Onifadeen
dc.contributor.authorJ Zhouen
dc.contributor.authorA I Lawalen
dc.contributor.authorOluwaseyi Badaen
dc.contributor.authorBekir Gencen
dc.date.accessioned2025-07-16T09:44:48Z
dc.facultyFACULTY OF ENGINEERING & THE BUILT ENVIRONMENTen
dc.identifier.citationWOSen
dc.identifier.issn0016-2361en
dc.identifier.urihttps://hdl.handle.net/10539/45517
dc.journal.titlePredicting the hardgrove grindability index using interpretable decisiontreebased machine learning modelsen
dc.journal.volume384en
dc.publisherELSEVIER SCI LTDen
dc.school3.07en
dc.titlePredicting the hardgrove grindability index using interpretable decisiontreebased machine learning modelsen
dc.typeJournal Articleen

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
Journal Article.pdf
Size:
8.43 MB
Format:
Adobe Portable Document Format
Description:
Bitstream uploaded by REST Client