Comparison of individual and ensemble machine learning models for prediction of sulphate levels in untreated and treated Acid Mine Drainage

dc.article.end-page27en
dc.article.start-page1en
dc.citation.doi10.1007/S10661-024-12467-8en
dc.contributor.authorTaskeen Hasroden
dc.contributor.authorY Nuapiaen
dc.contributor.authorHlanganani Tutuen
dc.date.accessioned2024-09-25T09:19:05Z
dc.date.available2024-09-25T09:19:05Z
dc.facultyFACULTY OF SCIENCEen
dc.identifier.citationWOSen
dc.identifier.issn0167-6369en
dc.identifier.urihttps://hdl.handle.net/10539/41060
dc.journal.titleComparison of individual and ensemble machine learning models for prediction of sulphate levels in untreated and treated Acid Mine Drainageen
dc.journal.volume196en
dc.publisherSPRINGERen
dc.school5.02en
dc.titleComparison of individual and ensemble machine learning models for prediction of sulphate levels in untreated and treated Acid Mine Drainageen
dc.typeJournal Articleen
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Journal Article.pdf
Size:
2.35 MB
Format:
Adobe Portable Document Format
Description:
Bitstream uploaded by REST Client