Diophantine equations with arithmetic functions and binary recurrences sequences

No Thumbnail Available

Date

2017

Authors

Faye, Bernadette

Journal Title

Journal ISSN

Volume Title

Publisher

Abstract

This thesis is about the study of Diophantine equations involving binary recurrent sequences with arithmetic functions. Various Diophantine problems are investigated and new results are found out of this study. Firstly, we study several questions concerning the intersection between two classes of non-degenerate binary recurrence sequences and provide, whenever possible, effective bounds on the largest member of this intersection. Our main study concerns Diophantine equations of the form '(jaunj) = jbvmj; where ' is the Euler totient function, fungn 0 and fvmgm 0 are two non-degenerate binary recurrence sequences and a; b some positive integers. More precisely, we study problems involving members of the recurrent sequences being rep-digits, Lehmer numbers, whose Euler’s function remain in the same sequence. We prove that there is no Lehmer number neither in the Lucas sequence fLngn 0 nor in the Pell sequence fPngn 0. The main tools used in this thesis are lower bounds for linear forms in logarithms of algebraic numbers, the so-called Baker-Davenport reduction method, continued fractions, elementary estimates from the theory of prime numbers and sieve methods.

Description

A thesis submitted to the Faculty of Science, University of the Witwatersrand and to the University Cheikh Anta Diop of Dakar(UCAD) in fulfillment of the requirements for a Dual-degree for Doctor in Philosophy in Mathematics. November 6th, 2017.

Keywords

Citation

Faye, Bernadette (2017) Diophantine equations with arithmetic functions and binary recurrences sequences, University of the Witwatersrand, Johannesburg, <http://hdl.handle.net/10539/24996>

Collections

Endorsement

Review

Supplemented By

Referenced By