Predictive modelling for coal abrasive index Unveiling influential factors through Shallow and Deep Neural Networks
dc.article.end-page | 12 | en |
dc.article.start-page | 1 | en |
dc.citation.doi | 10.1016/J.FUEL.2024.132319 | en |
dc.contributor.author | M Onifade | en |
dc.contributor.author | A.I Lawal | en |
dc.contributor.author | Oluwaseyi Bada | en |
dc.contributor.author | M Khandelwal | en |
dc.date.accessioned | 2024-11-07T11:24:34Z | |
dc.date.available | 2024-11-07T11:24:34Z | |
dc.faculty | FACULTY OF ENGINEERING & THE BUILT ENVIRONMENT | en |
dc.identifier.citation | WOS | en |
dc.identifier.issn | 0016-2361 | en |
dc.identifier.uri | https://hdl.handle.net/10539/42280 | |
dc.journal.title | Predictive modelling for coal abrasive index Unveiling influential factors through Shallow and Deep Neural Networks | en |
dc.journal.volume | 374 | en |
dc.publisher | ELSEVIER SCI LTD | en |
dc.title | Predictive modelling for coal abrasive index Unveiling influential factors through Shallow and Deep Neural Networks | en |
dc.type | Journal Article | en |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- Journal Article.pdf
- Size:
- 11.65 MB
- Format:
- Adobe Portable Document Format
- Description:
- Bitstream uploaded by REST Client