Channel Estimation for Indoor Terahertz UMMIMO A Deep Learning Perspective for 6G Applications

dc.article.end-page12en
dc.article.start-page1en
dc.citation.doi10.1049/CMU2.70053en
dc.contributor.authorSakhshra Mongaen
dc.contributor.authorGunjan Gargen
dc.contributor.authorNitin Salujaen
dc.contributor.authorOlutayo Oyerindeen
dc.date.accessioned2025-07-16T10:14:26Z
dc.facultyFACULTY OF ENGINEERING & THE BUILT ENVIRONMENTen
dc.identifier.citationWOSen
dc.identifier.issn1751-8628en
dc.identifier.urihttps://hdl.handle.net/10539/45527
dc.journal.titleChannel Estimation for Indoor Terahertz UMMIMO A Deep Learning Perspective for 6G Applicationsen
dc.journal.volume19en
dc.publisherINST ENGINEERING TECHNOLOGY-IETen
dc.school3.05en
dc.titleChannel Estimation for Indoor Terahertz UMMIMO A Deep Learning Perspective for 6G Applicationsen
dc.typeJournal Articleen

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
Journal Article.pdf
Size:
1.53 MB
Format:
Adobe Portable Document Format
Description:
Bitstream uploaded by REST Client