Effect of SiC abrasive breakdown on the wear rate of WC-12wt%Co alloy
No Thumbnail Available
Date
2008-06-25T11:13:28Z
Authors
Mabhali, Luyolo Andrew Baxolise
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract
This research project is a preliminary investigation of the effect of SiC abrasive
breakdown on the wear rate of a WC-12wt%Co mining alloy. Wear tests were
carried out on a two body-sliding wear apparatus under (a) “Ideal” (replacing the
SiC paper periodically to ensure continual exposure to fresh abrasives), (b) “No
debris” (removing the wear debris periodically) and (c) “With debris” (retaining
the wear debris for the entire wear test) wear conditions. The WC-12wt%Co
specimens and SiC abrasive grits were examined before and after the wear tests
using optical, stereo and electron microscopy.
As wear progressed, the SiC abrasives blunted thereby increasing the
abrasive/specimen contact area, resulting in a reduction in the WC-12wt%Co
wear rate. Wear debris clogging the interstices between the abrasive grits caused a
further reduction in the WC-12wt%Co wear rate by adding to the
abrasive/specimen contact area already created by blunting. Increasing the applied
load resulted in an increase in the WC-12wt%Co wear rate under “Ideal” wear
conditions. Under the remaining wear conditions, the increased load resulted in a
faster deterioration of the SiC grits. The dominant wear mechanisms under all
conditions are characterized by hard abrasive wear that caused extensive
grooving, Co binder extrusion and cracking and fragmentation of WC grains.
Description
Keywords
Tungsten carbide-cobalt alloys, Testing