Text mining of verbal autopsy narratives to extract mortality causes and most prevalent diseases using natural language processing
dc.article.end-page | 26 | en |
dc.article.start-page | 1 | en |
dc.citation.doi | 10.1371/JOURNAL.PONE.0308452 | en |
dc.contributor.author | Michael Mapundu | en |
dc.contributor.author | Chodziwadziwa Kabudula | en |
dc.contributor.author | Eustasius Musenge | en |
dc.contributor.author | V Olago | en |
dc.contributor.author | Turgay Celik | en |
dc.date.accessioned | 2024-11-18T10:49:59Z | |
dc.date.available | 2024-11-18T10:49:59Z | |
dc.faculty | FACULTY OF HEALTH SCIENCES | en |
dc.identifier.citation | WOS | en |
dc.identifier.issn | 1932-6203 | en |
dc.identifier.uri | https://hdl.handle.net/10539/42672 | |
dc.journal.title | Text mining of verbal autopsy narratives to extract mortality causes and most prevalent diseases using natural language processing | en |
dc.journal.volume | 19 | en |
dc.title | Text mining of verbal autopsy narratives to extract mortality causes and most prevalent diseases using natural language processing | en |
dc.type | Journal Article | en |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- Journal Article.pdf
- Size:
- 3.01 MB
- Format:
- Adobe Portable Document Format
- Description:
- Bitstream uploaded by REST Client