Sparse representation based hyperspectral image compression and classification
No Thumbnail Available
Date
2018
Authors
Wang, Hairong
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract
Abstract
This thesis presents a research work on applying sparse representation to lossy hyperspectral image
compression and hyperspectral image classification. The proposed lossy hyperspectral image
compression framework introduces two types of dictionaries distinguished by the terms sparse
representation spectral dictionary (SRSD) and multi-scale spectral dictionary (MSSD), respectively.
The former is learnt in the spectral domain to exploit the spectral correlations, and the
latter in wavelet multi-scale spectral domain to exploit both spatial and spectral correlations in
hyperspectral images. To alleviate the computational demand of dictionary learning, either a
base dictionary trained offline or an update of the base dictionary is employed in the compression
framework. The proposed compression method is evaluated in terms of different objective
metrics, and compared to selected state-of-the-art hyperspectral image compression schemes, including
JPEG 2000. The numerical results demonstrate the effectiveness and competitiveness of
both SRSD and MSSD approaches.
For the proposed hyperspectral image classification method, we utilize the sparse coefficients
for training support vector machine (SVM) and k-nearest neighbour (kNN) classifiers. In particular,
the discriminative character of the sparse coefficients is enhanced by incorporating contextual
information using local mean filters. The classification performance is evaluated and compared
to a number of similar or representative methods. The results show that our approach could outperform
other approaches based on SVM or sparse representation.
This thesis makes the following contributions. It provides a relatively thorough investigation
of applying sparse representation to lossy hyperspectral image compression. Specifically,
it reveals the effectiveness of sparse representation for the exploitation of spectral correlations
in hyperspectral images. In addition, we have shown that the discriminative character of sparse
coefficients can lead to superior performance in hyperspectral image classification.