Biodegradation of sodium benzoate by Pseudomonas biofilm consortium in a fluidized bed bioreactor

No Thumbnail Available

Date

2009-03-05T06:16:55Z

Authors

Ntoampe, Mannana Selina

Journal Title

Journal ISSN

Volume Title

Publisher

Abstract

Many strains of Gram-negative bacteria, such as Pseudomonas, are able to utilize a variety of unusual chemicals, including a wide range or aromatic hydrocarbons and their derivatives for growth. Bacteria with the potential to degrade sodium benzoate were isolated, identified and grown as biofilms on sodium benzoate in a laboratory-scale fluidized bed biofilm bioreactor. Four Pseudomonas strains identified as P. aeruginosa (BDS2) P. putida (BDS1 and GR1) and Burkholderia cepecia (GR3FAR) were used in a laboratory-scale FBBR together with two Bacillus strains - Bacillus macroides (SBSY4) and Bacillus simplex (MAR). Sodium benzoate biodegradation capacities of these species were compared under batch and continuous operations. Biofilm and planktonic bacterial growth dynamics were monitored by plate counts, and optical density measurements (230nm) determined benzoate biodegradation. Overall, higher attached and planktonic bacterial counts were determined under batch compared to continuous mode. In addition to this, the ability of attached cells to use sodium benzoate as their sole carbon source was compared to their suspended counterparts in a batch system. There were more attached counts compared to suspended cells and attached cells apparently degraded sodium benzoate better than planktonic cells. Similarly, higher rates of benzoate depletion were found to occur under batch compared to the continuous system. It thus appeared that more cell growth implied more substrate consumption. SEM showed attached cells and microcolonies of all the isolates on GAC, indicating their biofilmforming abilities.

Description

Keywords

Biodegradation, sodium benzoate, Pseudomonas, biofilm, batch, continuous

Citation

Collections

Endorsement

Review

Supplemented By

Referenced By