Predictive modelling of mineral prospectivity using satellite remotesensing and machine learning algorithms
dc.article.end-page | 19 | en |
dc.article.start-page | 1 | en |
dc.citation.doi | 10.1016/J.RSASE.2024.101316 | en |
dc.contributor.author | Muhammad Mahboob | en |
dc.contributor.author | Turgay Celik | en |
dc.contributor.author | Bekir Genc | en |
dc.date.accessioned | 2024-08-28T12:46:26Z | |
dc.date.available | 2024-08-28T12:46:26Z | |
dc.faculty | FACULTY OF ENGINEERING & THE BUILT ENVIRONMENT | en |
dc.identifier.citation | SCOPUS | en |
dc.identifier.uri | https://hdl.handle.net/10539/40383 | |
dc.journal.title | Predictive modelling of mineral prospectivity using satellite remotesensing and machine learning algorithms | en |
dc.journal.volume | 36 | en |
dc.school | 3.07 | en |
dc.title | Predictive modelling of mineral prospectivity using satellite remotesensing and machine learning algorithms | en |
dc.type | Journal Article | en |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- Journal Article.pdf
- Size:
- 16.7 MB
- Format:
- Adobe Portable Document Format
- Description:
- Bitstream uploaded by REST Client