Evaluating automatic annotation of lexiconbased models for stance detection of Mpox tweets from May 1st to Sep 5th 2022

dc.article.end-page14en
dc.article.start-page1en
dc.citation.doi10.1371/JOURNAL.PDIG.0000545en
dc.contributor.authorNicholas Periklien
dc.contributor.authorSrimoy Bhattacharyaen
dc.contributor.authorBlessing Ogbuokirien
dc.contributor.authorZahra Movahedi Niaen
dc.contributor.authorBenjamin Liebermanen
dc.contributor.authorNidhi Tripathien
dc.contributor.authorSalah-Eddine Dahbien
dc.contributor.authorFinn Stevensonen
dc.contributor.authorNicola Bragazzien
dc.contributor.authorJude Kongen
dc.contributor.authorBruce Melladoen
dc.date.accessioned2024-09-26T11:41:34Z
dc.date.available2024-09-26T11:41:34Z
dc.facultyFACULTY OF SCIENCEen
dc.identifier.citationDOAJen
dc.identifier.issn2767-3170en
dc.identifier.urihttps://hdl.handle.net/10539/41120
dc.journal.titleEvaluating automatic annotation of lexiconbased models for stance detection of Mpox tweets from May 1st to Sep 5th 2022en
dc.journal.volume3en
dc.titleEvaluating automatic annotation of lexiconbased models for stance detection of Mpox tweets from May 1st to Sep 5th 2022en
dc.typeJournal Articleen
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Journal Article.pdf
Size:
642.69 KB
Format:
Adobe Portable Document Format
Description:
Bitstream uploaded by REST Client