Engineering virus resistant transgenic cassava: the design of long hairpin RNA constructs against South African cassava mosaic virus

dc.contributor.authorHarmse, Johan
dc.date.accessioned2008-03-19T06:20:56Z
dc.date.available2008-03-19T06:20:56Z
dc.date.issued2008-03-19T06:20:56Z
dc.description.abstractABSTRACT Cassava is currently the second most important source of carbohydrates on the African continent. In the last two decades, cassava crops have been severely affected by outbreaks of cassava mosaic disease (CMD). South African cassava mosaic virus (SACMV) has been associated with CMD outbreaks in the Mpumalanga province. Advances in post-transcriptional gene silencing (PTGS) technology have provided promising new strategies for the engineering of virus resistance in plants. Inverted repeat (IR) constructs are currently the most potent inducers of PTGS, however, these constructs are inherently unstable. The purpose of this study was to develop IR constructs with an improved stability for the efficient induction of PTGS in plants. Two mismatched inverted repeat constructs, one targeting the SACMV BC1 open reading frame, the other targeting the Maize streak virus (MSV) AC1 open reading frame, were successfully created. Sodium bisulfite was used to deaminate cytosine residues on the sense arm of the constructs. The resulting number of GT mismatches was seemingly sufficient to stabilize the linear conformation of the IR constructs, as they were efficiently propagated by E.coli DH5!, and subsequently behaved like linear DNA molecules. Furthermore, it was found that the number of mismatches on the BC1 construct (17.5%) was ideal, as the subsequent stability of the predicted RNA hairpin was not affected. Due to the higher number of mismatches on the AC1 construct (23.5%), it was found that the loop region of the RNA hairpin was marginally destabilized. Despite this, long stretches of stable dsRNA were still produced from the AC1 IR construct, and is likely to induce PTGS. Interestingly, it was observed that the mismatched IR constructs, although still replicated in E.coli, were marginally destabilized in Agrobacterium. Therefore, it was deduced that the stability of a mismatched IR construct may be influenced by the particular intracellular environment of an organism. Due to the recalcitrance of cassava to transformation, a model plant system, Nicotiana benthamiana, was used to screen constructs for toxicity, stability, and efficiency of PTGS induction. Agrobacteriummediated transformation and regeneration of N. benthamiana was optimized, and 86% transformation efficiency was achieved when using leaf disk explants. It was found that the addition of an ethylene scrubber, potassium permanganate, substantially increased the rate of regeneration by reducing the frequency of hyperhydritic plants. Transgene iv integration was confirmed by PCR amplification of the hptII gene in the T-DNA region. Transgene expression was confirmed by screening for GUS and GFP reporter genes. No toxic responses to the transgene have been observed thus far. Studies are currently underway to confirm the stability of the mismatched IR constructs in N. benthamiana. PAGE Northern blotting is being done, as the detection of siRNAs derived from the transgene will confirm that constructs are functional. In addition, infectivity assays are underway to determine the efficacy of BC1 knockdown by a stably integrated construct. Due to the enhanced stability of mismatched IR constructs, they may be an appealing alternative to currently available intron-spliced, or exact matched hairpin systems.en
dc.format.extent11486195 bytes
dc.format.mimetypeapplication/pdf
dc.identifier.urihttp://hdl.handle.net/10539/4685
dc.language.isoenen
dc.subjectRNA interferenceen
dc.subjectPost-transcriptional gene silencingen
dc.subjectGenetic engineeringen
dc.subjectCassavaen
dc.titleEngineering virus resistant transgenic cassava: the design of long hairpin RNA constructs against South African cassava mosaic virusen
dc.typeThesisen

Files

Original bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
Harmse_MSc_2007.pdf
Size:
10.95 MB
Format:
Adobe Portable Document Format

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
96 B
Format:
Item-specific license agreed upon to submission
Description:

Collections