Machine learning algorithms for predicting determinants of COVID19 mortality in South Africa
dc.article.end-page | 9 | en |
dc.article.start-page | 1 | en |
dc.citation.doi | 10.3389/FRAI.2023.1171256 | en |
dc.contributor.author | E Chimbunde | en |
dc.contributor.author | L N Sigwadhi | en |
dc.contributor.author | J L Tamuzi | en |
dc.contributor.author | E L Okango | en |
dc.contributor.author | E et al | en |
dc.contributor.author | Peter Nyasulu | en |
dc.date.accessioned | 2024-07-23T06:00:45Z | |
dc.date.available | 2024-07-23T06:00:45Z | |
dc.faculty | FACULTY OF HEALTH SCIENCES | en |
dc.identifier.citation | SCOPUS | en |
dc.identifier.uri | https://hdl.handle.net/10539/39589 | |
dc.journal.title | Machine learning algorithms for predicting determinants of COVID19 mortality in South Africa | en |
dc.journal.volume | 6 | en |
dc.title | Machine learning algorithms for predicting determinants of COVID19 mortality in South Africa | en |
dc.type | Journal Article | en |
Files
Original bundle
1 - 1 of 1
- Name:
- Journal Article.pdf
- Size:
- 832.16 KB
- Format:
- Adobe Portable Document Format
- Description:
- Bitstream uploaded by REST Client