The dual ema-fem approach to dynamic analysis.
dc.contributor.author | Grobler, Steven Robert | |
dc.date.accessioned | 2020-01-09T07:51:41Z | |
dc.date.available | 2020-01-09T07:51:41Z | |
dc.date.issued | 1990 | |
dc.description | A dissertation submitted to the Faculty of Engineering, University of the Witwatersrand, Johannesburg, in fulfillment of the requirements for the degree of Master of Science in Engineering | en_ZA |
dc.description.abstract | It has been said that experimental modal analysis (EMA) "grew to prominence because the engineering community was incapable of properly analyzing the dynamics of commercially significant structures" [24]. The advent of powerful theoretical methods, such as the Finite Element Method (FEM) has not, however, resulted in the demise of EMA. In fact both FEM and EMA have undergone rapid growth and the merging of the two into an effective design and diagnostic tool has had a major impact on the engineering community's approach to dynamics related problems. In this study, the term dual has no mathematical connotations and is used to describe the complementary use of the techniques of EMA and FEM. The mining industry, worldwide, has experienced dynamics related problems in the operation of conveyances in vertical shafts. A study undertaken in South Africa investigated the behaviour of shaft steelwork and skips, resulting in a set of design guidelines for future shaft steelwork designs. This work only investigated the dynamic behaviour of skips. In this project, the ABAQUS and MODEL SOLUTION FEM codes were used to construct models of a. mine cage. An impact modal test was carried ant on the cage, using a GenRad 2515 CAT system, An impact hammer, suitable for exciting large structures, and a strain gauge force transducer were designed and built for the purpose of the test. The natural frequencies and mode shapes obtained from both FEM and EMA are compared by means of the modal assurance criterion (MAC). The test data is used to tune the model to produce accurate results. The model Could then be used (with minimal further test work) for predicting the response of the structure to dynamic loading or the effects of structural modifications. | en_ZA |
dc.description.librarian | Andrew Chakane 2020 | en_ZA |
dc.identifier.uri | https://hdl.handle.net/10539/28733 | |
dc.language.iso | en | en_ZA |
dc.subject | Mining machinery -- Dynamics -- Research. | en_ZA |
dc.subject | Mine hoisting -- Research. | en_ZA |
dc.subject | Hoists And Elevators -- Design and construction -- Research. | en_ZA |
dc.subject | Finite element method. | en_ZA |
dc.title | The dual ema-fem approach to dynamic analysis. | en_ZA |
dc.type | Thesis | en_ZA |
Files
Original bundle
1 - 1 of 1
No Thumbnail Available
- Name:
- Grobler Steven Robert._The Dual Emafem Approach To.pdf
- Size:
- 4.98 MB
- Format:
- Adobe Portable Document Format
- Description:
License bundle
1 - 1 of 1
No Thumbnail Available
- Name:
- license.txt
- Size:
- 1.71 KB
- Format:
- Item-specific license agreed upon to submission
- Description: