Factors influencing fly ash formation and slag deposit formation (slagging) on combusting a south african pulverised fuel in a 200 MWe boiler

dc.contributor.authorvan Alphen, Christopher
dc.date.accessioned2006-04-24T08:25:17Z
dc.date.available2006-04-24T08:25:17Z
dc.date.issued2006-04-24
dc.descriptionDegree: PhD Department: Engineeringen
dc.description.abstract1997, South African’s major power utility, recognised the need to improve the understanding of fly ash formation and slag deposition of South African coals. This requirement is due to the predicted quality changes of power station feedstocks and the limited research into the slagging propensity of South African coals. This research seeks to develop an analytical technique and a fly ash formation model for predicting the slagging propensity of coals. The research will establish if the models based on Carboniferous coals can be applied to South African Permian coals. A water-cooled suction pyrometer with a custom designed slag probe was used to obtain samples of fly ash and slag from within a 200 MWe pulverised fuel boiler. Simultaneously, samples of pulverised fuel feedstock were collected. The mineral attributes in the pulverised fuel and the phases in fly ash and slag deposit were quantified by CCSEM. The analytical procedure, CCSEM, has been developed with a novel procedure for identifying minerals and C-bearing phases. The new fly ash formation model assumes that the mineral attributes of the combusting pulverised fuel particle controls the size and elemental signature of the resultant fly ash particle(s). The new model has shown that the inherent mineral attributes controls the physical and chemical characteristics of the initial fly ash phases. Thereafter, conditions (stoichiometric, temperature and turbulence) within the combustion chamber promote the physical and/or chemical interaction of the initial fly ash particles. Slag deposits are enriched in Ca- and Fe-bearing alumino-silicates. The new slagging propensity index is based on either predicting or measuring the proportion of Ca- and Fe-bearing alumino-silicates. iv The numerous fly ash formation models, based on Carboniferous coals are not necessarily valid for South African coals. It is not the integrity of the actual fly ash formation mechanisms that is questioned, but rather the experimental scale on which the models are based. This research has produced an analytical technique and a fly ash formation model to predict the slagging propensity of coals. This forms a platform for further research into the role that organically bound cations, combustion conditions and boiler configuration has on the formation of Ca- and Fe-bearing alumino-silicates.en
dc.format.extent4524701 bytes
dc.format.mimetypeapplication/pdf
dc.identifier.urihttp://hdl.handle.net/10539/352
dc.language.isoenen
dc.subjectpulveriseden
dc.subjectfuelen
dc.subjectboileren
dc.subjectcombustingen
dc.subjectslaggingen
dc.subjectsouth africaen
dc.subjectfly ashen
dc.subjectslag depositen
dc.titleFactors influencing fly ash formation and slag deposit formation (slagging) on combusting a south african pulverised fuel in a 200 MWe boileren
dc.typeThesisen
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Thesis.pdf
Size:
4.32 MB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.8 KB
Format:
Item-specific license agreed upon to submission
Description:
Collections