Non-linear integer programming fleet assignment model

Phokomela, Prince Lerato
Journal Title
Journal ISSN
Volume Title
Given a flight schedule with fixed departure times and cost, solving the fleet assignment problem assists airlines to find the minimum cost or maximum revenue assignment of aircraft types to flights. The result is that each flight is covered exactly once by an aircraft and the assignment can be flown using the available number of aircraft of each fleet type. This research proposes a novel, non-linear integer programming fleet assignment model which differs from the linear time-space multi-commodity network fleet assignment model which is commonly used in industry. The performance of the proposed model with respect to the amount of time it takes to create a flight schedule is measured. Similarly, the performance of the time-space multicommodity fleet assignment model is also measured. The objective function from both mathematical models is then compared and results reported. Due to the non-linearity of the proposed model, a genetic algorithm (GA) is used to find a solution. The time taken by the GA is slow. The objective function value, however, is the same as that obtained using the time-space multi-commodity network flow model. The proposed mathematical model has advantages in that the solution is easier to interpret. It also simultaneously solves fleet assignment as well as individual aircraft routing. The result may therefore aid in integrating more airline planning decisions such as maintenance routing.
A dissertation submitted to the Faculty of Engineering and the Built Environment, University of the Witwatersrand, Johannesburg, in fulfilment of the requirements for the degree of Master of Science in Engineering. University of the Witwatersrand, Johannesburg, 2016
Phokomela, Prince Lerato (2016) Non-linear integer programming fleet assignment model, University of the Witwatersrand, Johannesburg, <>