Compositions with a fixed number of inversions

dc.article.end-page617
dc.article.start-page601
dc.contributor.authorKnopfmacher, A.
dc.contributor.otherauthorMays, M. E.
dc.contributor.otherauthorWagner, S.
dc.date.accessioned2025-04-23T12:42:50Z
dc.date.issued2018-05
dc.description.abstractA composition of the positive integer n is a representation of n as an ordered sum of positive integers n = a1 + a2 + ··· + am. There are 2n−1 unrestricted compositions of n, which can be sorted according to the number of inversions they contain. (An inversion in a composition is a pair of summands {ai, aj} for which i<j and ai > aj .) The number of inversions of a composition is an indication of how far the composition is from a partition of n, which by convention uses a sequence of nondecreasing summands and thus has no inversions. We count compositions of n with exactly r inversions in several ways to derive generating function identities, and also consider asymptotic results.
dc.description.sponsorshipNational Research Foundation.
dc.description.submitterPM2025
dc.facultyFaculty of Science
dc.identifier0000-0003-1962-043X
dc.identifier.citationKnopfmacher, A., Mays, M.E. & Wagner, S. Compositions with a fixed number of inversions. Aequat. Math. 93, 601–617 (2019). https://doi.org/10.1007/s00010-018-0563-6
dc.identifier.issn0001-9054 (print)
dc.identifier.issn1420-8903 (online)
dc.identifier.other10.1007/s00010-018-0563-6
dc.identifier.urihttps://hdl.handle.net/10539/44841
dc.journal.titleAequationes Mathematicae
dc.language.isoen
dc.publisherSpringer
dc.relation.ispartofseriesVol.93
dc.rights© Springer International Publishing AG, part of Springer Nature 2018.
dc.schoolSchool of Mathematics
dc.subjectComposition
dc.subjectPartition
dc.subjectInversion
dc.subject.primarysdgN/A
dc.titleCompositions with a fixed number of inversions
dc.typeArticle

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
Knopfmacher_Compositions_2018.pdf
Size:
502.35 KB
Format:
Adobe Portable Document Format

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
2.43 KB
Format:
Item-specific license agreed upon to submission
Description: