Faculty of Engineering and Built Environment
Permanent URI for this communityhttps://wiredspace.wits.ac.za/handle/10539/5024
For information on accessing Architecture & Built Environment content please contact Katlego Chiya via email : Katlego.Chiya@wits.ac.za or Tel (W) : 011 717 1978
For information on Engineering collections content please contact Salome Potgieter by email : salome.potgieter@wits.ac.za or Tel : 011 717 1961
Browse
3 results
Search Results
Item A maturity approach to the rate of heat evolution in concrete.(ICE Publishing, 2003) Ballim, Y.; Graham, P.C.This paper discusses the use of the concept of maturity as a means of combining the effects of time and temperature in describing the rate of heat evolution from hydrating cement in concrete. The proposed maturity approach allows the rate of heat evolution determined from an adiabatic test to be expressed in a form which is independent of the starting temperature of the test. This relationship can then be directly used in a time-temperature prediction model that requires a solution of the Fourier equation for heat flow. The results of an experimental study aimed at assessing the suitability of both the Arrhenius and Nurse-Saul maturity relationships is also presented. Three adiabatic calorimeter tests were conducted on each of two concrete mixtures but starting at different temperatures. The results confirm the suitability of this approach and indicate that, of the two maturity relationships assessed, the Arrhenius maturity relationship is the more suitable in this application.Item Early-age heat evolution of clinker cements in relation to microstructure and composition: Implications for temperature development in large concrete elements.(Elsevier, 2004) Ballim, Y.; Graham, P.C.This paper presents an assessment of the range and extent of variation of heat evolution of nominally similar cement clinkers from a range of cement production facilities in South Africa. Clinker samples were collected at nine cement plants and cements were prepared by grinding each clinker with a uniform quality of gypsum. X-ray fluorescence and optical microscope techniques were then used to characterise each clinker and cement in terms of chemical composition and cement compound morphology. Concretes were then prepared with the laboratory-manufactured cements and these were tested in an adiabatic calorimeter in order to determine the rate of heat evolution from each of the clinker samples. The results of these tests were related to the chemical and morphological characteristics of the corresponding cement clinkers. The results indicate a clear differentiation of clinker cements into low, medium and high heat cements. The relationships between this classification of the heat performance of the cements and the chemistry and morphology of the clinker is not clear at this stage. However, using a finite difference heat model, the paper presents an indication of the implications of the measured heat characteristics of the cement for early-age temperature distributions in large concrete elements.Item The effects of supplementary cementing materials in modifying the heat of hydration of concrete.(Springer, 2009) Ballim, Y.; Graham, P.C.This paper is intended to provide guidance on the form and extent to which supplementary cementing materials, in combination with Portland cement, modifies the rate of heat evolution during the early stages of hydration in concrete. In this investigation, concretes were prepared with fly ash, condensed silica fume and ground granulated blastfurnace slag, blended with Portland cement in proportions ranging from 5% to 80%. These concretes were subjected to heat of hydration tests under adiabatic conditions and the results were used to assess and quantify the effects of the supplementary cementing materials in altering the heat rate profiles of concrete. The paper also proposes a simplified mathematical form of the heat rate curve for blended cement binders in concrete to allow a design stage assessment of the likely early-age time–temperature profiles in large concrete structures. Such an assessment would be essential in the case of concrete structures where the potential for thermally induced cracking is of concern.