School of Animal, Plant and Environmental Sciences
Permanent URI for this communityhttps://wiredspace.wits.ac.za/handle/10539/20141
For queries regarding content of Faculty of Science please contact Salome Potgieter by email : salome.potgieter@wits.ac.za or Tel : 011 717 1961
Browse
3 results
Search Results
Item Variation by Geographic Scale in the Migration-Environment Association: Evidence from Rural South Africa(Federal Institute for Population Research, 2017) Hunter, L.M.; Leyk, S.; Maclaurin, G.J.; Nawrotzki, R.; Twine, W.; Erasmus, B.F.N.; Collinson, M.Scholarly understanding of human migration’s environmental dimensions has greatly advanced in the past several years, motivated in large part by public and policy dialogue around “climate migrants”. The research presented here advances current demographic scholarship both through its substantive interpretations and conclusions, as well as its methodological approach. We examine temporary rural South African outmigration as related to household-level availability of proximate natural resources. Such “natural capital” is central to livelihoods in the region, both for sustenance and as materials for market-bound products. The results demonstrate that the association between local environmental resource availability and outmigration is, in general, positive: households with higher levels of proximate natural capital are more likely to engage in temporary migration. In this way, the general findings support the “environmental surplus” hypothesis that resource security provides a foundation from which households can invest in migration as a livelihood strategy. Such insight stands in contrast to popular dialogue, which tends to view migration as a last resort undertaken only by the most vulnerable households. As another important insight, our findings demonstrate important spatial variation, complicating attempts to generalize migration-environment findings across spatial scales. In our rural South African study site, the positive association between migration and proximate resources is actually highly localized, varying from strongly positive in some villages to strongly negative in others. We explore the socio-demographic factors underlying this “operational scale sensitivity”. The cross-scale methodologies applied here offer nuance unavailable within more commonly used global regression models, although also introducing complexity that complicates story-telling and inhibits generalizability.Item Land-cover change in the Kruger to Canyons Biosphere Reserve 1993-2006): A first step towards creating a conservation plan for the subregion.(Academy of Science of South Africa (ASSAf), 2010-07) Coetzer, K.L.; Erasmus, B.F.N.; Witkowski, E.T.F.; Bachoo, A.K.This paper is a first step towards a conservation plan for the Kruger to Canyons Biosphere Reserve K2C) on the South African Central Lowveld, quantifying the historical land-cover trends 1993-2006). During the analysis period, 36% of the biosphere reserve BR) underwent land-cover change. Settlement areas increased by 39.7%, mainly in rural areas, becoming denser, particularly along roadways. Human-Impacted Vegetation increased by 6.8% and Intact Vegetation declined by 7.3%, predominantly around settlement areas, which is testament to the interdependency between rural communities and the local environment. However, settlement expansion exceeded the rate of rangeland growth; in the long term, this may raise questions for sustainable resource extraction. Similarly, the block losses of intact vegetation are of concern; issues of fragmentation arise, with knock-on effects for ecosystem functioning. In the economic sector, agriculture increased by 51.9%, while forestry and mining declined by 7.1% and 6.3%, respectively. The future of these three sectors may also have significant repercussions for land-cover change in the BR. The identification of historical drivers, along with the chance that existing trends may continue, will have important implications for biodiversity protection in this landscape. Applied within a conservation-planning framework, these land-cover data, together with economic and biodiversity data, will help reconcile the spatial requirements of socio-economic development with those of conservation.Item Biomass increases go under cover: Woody vegetation dynamics in South African rangelands.(Public Library of Science, 2015-05) Mograbi, P.J.; Erasmus, B.F.N.; Witkowski, E.T.F.; Martin, R.E.; Main, R.; Asner, G.P.; Wessels, K.J.; Mathieu, R.; Knapp, D.E.Woody biomass dynamics are an expression of ecosystem function, yet biomass estimates do not provide information on the spatial distribution of woody vegetation within the vertical vegetation subcanopy. We demonstrate the ability of airborne light detection and ranging (LiDAR) to measure aboveground biomass and subcanopy structure, as an explanatory tool to unravel vegetation dynamics in structurally heterogeneous landscapes. We sampled three communal rangelands in Bushbuckridge, South Africa, utilised by rural communities for fuelwood harvesting. Woody biomass estimates ranged between 9 Mg ha-1 on gabbro geology sites to 27 Mg ha-1 on granitic geology sites. Despite predictions of woodland depletion due to unsustainable fuelwood extraction in previous studies, biomass in all the communal rangelands increased between 2008 and 2012. Annual biomass productivity estimates (10-14% p.a.) were higher than previous estimates of 4% and likely a significant contributor to the previous underestimations of modelled biomass supply. We show that biomass increases are attributable to growth of vegetation <5 m in height, and that, in the high wood extraction rangeland, 79% of the changes in the vertical vegetation subcanopy are gains in the 1-3m height class. The higher the wood extraction pressure on the rangelands, the greater the biomass increases in the low height classes within the subcanopy, likely a strong resprouting response to intensive harvesting. Yet, fuelwood shortages are still occurring, as evidenced by the losses in the tall tree height class in the high extraction rangeland. Loss of large trees and gain in subcanopy shrubs could result in a structurally simple landscape with reduced functional capacity. This research demonstrates that intensive harvesting can, paradoxically, increase biomass and this has implications for the sustainability of ecosystem service provision. The structural implications of biomass increases in communal rangelands could be misinterpreted as woodland recovery in the absence of three-dimensional, subcanopy information.