1. Academic Wits Research Publications (Faculties submissions)

Permanent URI for this communityhttps://hdl.handle.net/10539/37774

Browse

Search Results

Now showing 1 - 10 of 37
  • Thumbnail Image
    Item
    Dimethylformamide is a novel nitrilase inducer in Rhodococcus rhodochrous
    (Springer, 2018-09) Chhiba-Govindjee, V. P.; Brady, D.; Mathiba, K.; van der Westhuyzen, C. W.; Steenkamp, P.; Rashamuse, J. K.; Stoychev, S.
    Nitrilases are of commercial interest in the selective synthesis of carboxylic acids from nitriles. Nitrilase induction was achieved here in three bacterial strains through the incorporation of a previously unrecognised and inexpensive nitrilase inducer, dimethylformamide (DMF), during cultivation of two Rhodococcus rhodochrous strains (ATCC BAA-870 and PPPPB BD1780), as well as a closely related organism (Pimelobacter simplex PPPPB BD-1781). Benzonitrile, a known nitrilase inducer, was ineffective in these strains. Biocatalytic product profiling, enzyme inhibition studies and protein sequencing were performed to distinguish the nitrilase activity from that of sequential nitrile hydratase-amidase activity. The expressed enzyme, a 40-kDa protein with high sequence similarity to nitrilase protein Uniprot Q-03217, hydrolyzed 3-cyanopyridine to produce nicotinic acid exclusively in strains BD-1780 and BD-1781. These strains were capable of synthesising both the vitamin nicotinic acid as well as β-amino acids, a compound class of pharmaceutical interest. The induced nitrilase demonstrated high enantioselectivity (>99%) in the hydrolysis of 3-amino-3-phenylpropanenitrile to the corresponding carboxylic acid.
  • Thumbnail Image
    Item
    Free field primaries in general dimensions: counting and construction with rings and modules
    (Springer, 2018-08) de Mello Koch, Robert
    We define lowest weight polynomials (LWPs), motivated by so(d, 2) representation theory, as elements of the polynomial ring over d × n variables obeying a system of first and second order partial differential equations. LWPs invariant under Sn correspond to primary fields in free scalar field theory in d dimensions, constructed from n fields. The LWPs are in one-to-one correspondence with a quotient of the polynomial ring in d × (n − 1) variables by an ideal generated by n quadratic polynomials. The implications of this description for the counting and construction of primary fields are described: an interesting binomial identity underlies one of the construction algorithms. The product on the ring of LWPs can be described as a commutative star product. The quadratic algebra of lowest weight polynomials has a dual quadratic algebra which is non-commutative. We discuss the possible physical implications of this dual algebra.
  • Thumbnail Image
    Item
    Maximizing access and minimizing barriers to research in low- and middle-income countries: open access and health equity
    (Springer, 2023-11) Saloojee, Haroon; Pettifor, John M.
    Access to published research has always been difcult for researchers and clinicians in low- and middle-income countries,because of the cost of and lack of access to the relevant publications. The dramatic recent increase in electronic research publications has resulted in a marked improvement in reader access to these publications through their mainly Open Access policies, however the costs of processing of submissions and publication have now become the burden of the researchers wishing to publish, rather than the readers. For many researchers working in LMIC, the Article Processing Charges (APC) are prohibitive, hampering the publication of research being conducted in and relevant to these countries. A number of grant funding agencies and international not-for-proft organizations are trying to address these issues by including funding for article publications in their grants, or by supporting publishing entities by subsiding the cost of publication, but more needs to be done by major journal publishers through markedly reducing the APC being charged to researchers in LMIC for open access facilities.
  • Thumbnail Image
    Item
    Kondo effect and enhanced magnetic properties in gadolinium functionalized carbon nanotube supramolecular complex
    (Nature Research, 2018-05) Ncube, S.; Coleman, C.; Strydom, A.; Flahaut, E.; de Sousa, A.
    We report on the enhancement of magnetic properties of multiwalled carbon nanotubes (MWNTs) functionalized with a gadolinium based supramolecular complex. By employing a newly developed synthesis technique, we find that the functionalization method of the nanocomposite enhances the strength of magnetic interaction, leading to a large effective moment of 15.79µB and nonsuperparamagnetic behavior, unlike what has been previously reported. Saturating resistance at low temperatures is ftted with the numerical renormalization group formula, verifying the Kondo effect for magnetic impurities on a metallic electron system. Magnetoresistance shows devices fabricated from aligned gadolinium functionalized MWNTs (Gd-Fctn-MWNTs) exhibit spin-valve switching behaviour of up to 8%. This study highlights the possibility of enhancing magnetic interactions in carbon systems through chemical modification, moreover, we demonstrate the rich physics that might be useful for developing spin based quantum computing elements based on one-dimensional (1D) channels.
  • Thumbnail Image
    Item
    Minimising the risk of thermally induced cracking in mass concrete structures through suitable materials selection and processing
    (Springer, 2018) Ballim, Yunus
    The hydration of cement is an exothermic reaction which generates around 300 kJ/kg of cement hydrated. In mass concrete structures such as dams and large foundations, this heat of hydration causes a significant rise in temperature in the internal sections of the concrete. If thermal gradients between the internal sections and the near-surface zone of the concrete element are sufficiently large, the thermal stress can cause cracking of the concrete. This cracking may cause functional or structural problems in the operation of the structure. In order to minimise the potential for such cracking, it is necessary to minimise the rate and amount of heat that is evolved, particularly during the early period of the hydration process. This can be achieved by design engineers and concrete technologists through judicious selection and processing of concrete-making materials. This paper presents the observations and results obtained over a number of years from adiabatic testing of concretes, computational modelling of temperature development in large concrete structures and direct temperature measurements in actual structures, with a view to understanding the effects of concrete-making materials on temperature development in concrete. The paper considers the effects of different types of rock aggregates, different types of Portland cement, fineness of grinding of the cement, the addition of supplementary cementitious materials and variations in the concrete starting temperature on temperature development in a large concrete element over time. The results indicate that using a coarser ground cement, adding significant amounts of supplementary cementitious materials and cooling the concrete mixture before placing has a more significant effect in reducing the risk of cracking than varying the aggregate type of the Portland cement type.
  • Thumbnail Image
    Item
    Chemical analysis of low grade gold from mine tailings after size fractionation and acid digestion using reverse aqua regia
    (Nature Research, 2025-03) Chimuka, Luke; Tshilongo, James; Mashale, Kedibone Nicholine; Sehata, James; Ntsasa, Napo Godwill
    The growing interest in reprocessing mine tailings for gold recovery requires a suitable quantification method that is accurate, rapid, and not harsh to the environment. Acid digestion is often used to determination of gold; however, it often faces the challenge of incomplete digestion due to the presence of minerals such as quartz, and homogeneity is compromised due to small sample masses, which can result in low bias. This study investigated a shorter acid digestion method employing reverse aqua regia, both in the presence and absence of hydrofluoric acid. Before digestion, the sample was subjected to gold depot analysis, which showed that 78% was free-milling gold and that only 0.8% was associated with pyrite, increasing the chances of accurate quantifications. Furthermore, the size screening test showed that most of the gold could be recovered on the −38 μm screen. This proposed method provided good linearity (5–100 µg. L−1) and low detection limits (0.139–0.183 µg.kg−1). The concentrations obtained by the acid digestion was 0.258 g.t−1 with the recoveries ranging between 80% and 82%, which fit the criteria set. The method also worked well for the certified reference materials (CRM), AMIS 610 (accurate value=0.068 g.t−1) and AMIS 646 (accurate value=0.166 g.t−1), which are of a similar matrix and are also lower in grade compared to the sample. The method was also evaluated for uncertainty (±value) using the bottom-up approach, and the expanded uncertainty (k=2) was reported to be 0.258±0.092 g.t−1, which was comparable to that offered by the fire assay with the ICP‒OES finish, which was 0.28±0.10 g.t−1. This implies that the acid digestion method is suitable for quantifying gold from mine tailings without large uncertainties.
  • Thumbnail Image
    Item
    Topological rejection of noise by quantum skyrmions
    (Nature Research, 2025-03) Ornelas, Pedro; Forbes, Andrew; de Mello Koch, Robert
    An open challenge in the context of quantum information processing and communication is improving the robustness of quantum information to environmental contributions of noise, a severe hindrance in real-world scenarios. Here, we show that quantum skyrmions and their nonlocal topological observables remain resilient to noise even as typical entanglement witnesses and measures of the state decay. This allows us to introduce the notion of digitization of quantum information based on our discrete topological quantum observables, foregoing the need for robustness of entanglement. We compliment our experiments with a full theoretical treatment that unlocks the quantum mechanisms behind the topological behavior, explaining why the topology leads to robustness. Our approach holds exciting promise for intrinsic quantum information resilience through topology, highly applicable to real-world systems such as global quantum networks and noisy quantum computers.
  • Thumbnail Image
    Item
    A Technique to Solve a Parabolic Equation by Point Symmetries that Incorporate Initial Data
    (Springer, 2025-03) Jamal, Sameerah; Maphanga, Rivoningo
    In this paper, we show how transformation techniques coupled with a convolution integral can be used to solve a generalised option-pricing model, including the Black–Scholes model. Such equations are parabolic and the special convolutions are extremely involved as they arise from an initial value problem. New symmetries are derived to obtain solutions through an application of the invariant surface condition. The main outcome is that the point symmetries are effective in producing exact solutions that satisfy a given initial condition, such as those represented by a call-option.
  • Thumbnail Image
    Item
    Making a Mark: Wits School of Construction Economics and Management and Its Contribution to the Construction and Property Fields
    (University of the Witwatersrand, Johannesburg, 2024) Laryea, Samuel; Smit-Stachowski, Alexandra; Mphuti, Bongi
    This book is a historical account on the Wits School of Construction Economics and Management, its contributions and impact in society, which is very significant and leaves a positive impression of academic and industry development, despite historical hurdles. It looks at the past, present, and future of the School in the broader context of South African history and the overall development of the university. The process of writing this book has been both challenging and exciting with interesting discoveries about the academic disciplines and the growth trajectory of the School. It was challenging uncovering information from various sources within the university and external sources. It has also been an interesting process learning about the rich history and contributions of a key School within the university to the South African and global society. This book chronicles the careers of some graduates of the School who served in the highest leadership and management roles, and made an indelible mark in the construction industry locally and internationally. The School’s graduates have made substantial contributions to the growth and advancement of the South African construction and property sectors and their respective statutory councils including the South African Council for Quantity Surveying Profession (SACQSP), South African Council for Project and Construction Management Professions (SACPCMP) and the South African Council for the Property Valuers Profession (SACPVP). The School’s graduates have also played leading roles in major construction firms that have built some of the iconic buildings in South Africa and other parts of the world. In recent years, many of the School’s graduates are increasingly being recruited by firms in Europe, Middle East, Australia, and the US, indicating the quality of their education and their value to employers and the global construction industry.
  • Thumbnail Image
    Item
    Assessing the value of third parties in transboundary water governance: a constructivist institutionalism perspective on the Incomati River Basin
    (Taylor and Francis Group, 2025-01) Zikhali-Nyoni, Thobekile
    This paper examines the role of third parties in shaping transboundary water governance in the Incomati River Basin, focusing on the Southern African Development Community, the World Bank, China, and Brazil. The analysis explores how these actors shape power dynamics, foster cooperation, and balance regional interests with local needs. Using Constructivist Institutionalism, the paper reveal show prioritizing shared goals over individual interests fosters effective cooperation. The findings underscore the dual nature of third-party involvement; balancing power while advancing their own agendas, and demonstrate how these actors’ help states navigate complex challenges, bridge gaps and facilitate cooperation in the river basin.