Faculty of Science (Research Outputs)

Permanent URI for this communityhttps://hdl.handle.net/10539/38025

Browse

Search Results

Now showing 1 - 10 of 13
  • Thumbnail Image
    Item
    Kondo effect and enhanced magnetic properties in gadolinium functionalized carbon nanotube supramolecular complex
    (Nature Research, 2018-05) Ncube, S.; Coleman, C.; Strydom, A.; Flahaut, E.; de Sousa, A.
    We report on the enhancement of magnetic properties of multiwalled carbon nanotubes (MWNTs) functionalized with a gadolinium based supramolecular complex. By employing a newly developed synthesis technique, we find that the functionalization method of the nanocomposite enhances the strength of magnetic interaction, leading to a large effective moment of 15.79µB and nonsuperparamagnetic behavior, unlike what has been previously reported. Saturating resistance at low temperatures is ftted with the numerical renormalization group formula, verifying the Kondo effect for magnetic impurities on a metallic electron system. Magnetoresistance shows devices fabricated from aligned gadolinium functionalized MWNTs (Gd-Fctn-MWNTs) exhibit spin-valve switching behaviour of up to 8%. This study highlights the possibility of enhancing magnetic interactions in carbon systems through chemical modification, moreover, we demonstrate the rich physics that might be useful for developing spin based quantum computing elements based on one-dimensional (1D) channels.
  • Thumbnail Image
    Item
    Chemical analysis of low grade gold from mine tailings after size fractionation and acid digestion using reverse aqua regia
    (Nature Research, 2025-03) Chimuka, Luke; Tshilongo, James; Mashale, Kedibone Nicholine; Sehata, James; Ntsasa, Napo Godwill
    The growing interest in reprocessing mine tailings for gold recovery requires a suitable quantification method that is accurate, rapid, and not harsh to the environment. Acid digestion is often used to determination of gold; however, it often faces the challenge of incomplete digestion due to the presence of minerals such as quartz, and homogeneity is compromised due to small sample masses, which can result in low bias. This study investigated a shorter acid digestion method employing reverse aqua regia, both in the presence and absence of hydrofluoric acid. Before digestion, the sample was subjected to gold depot analysis, which showed that 78% was free-milling gold and that only 0.8% was associated with pyrite, increasing the chances of accurate quantifications. Furthermore, the size screening test showed that most of the gold could be recovered on the −38 μm screen. This proposed method provided good linearity (5–100 µg. L−1) and low detection limits (0.139–0.183 µg.kg−1). The concentrations obtained by the acid digestion was 0.258 g.t−1 with the recoveries ranging between 80% and 82%, which fit the criteria set. The method also worked well for the certified reference materials (CRM), AMIS 610 (accurate value=0.068 g.t−1) and AMIS 646 (accurate value=0.166 g.t−1), which are of a similar matrix and are also lower in grade compared to the sample. The method was also evaluated for uncertainty (±value) using the bottom-up approach, and the expanded uncertainty (k=2) was reported to be 0.258±0.092 g.t−1, which was comparable to that offered by the fire assay with the ICP‒OES finish, which was 0.28±0.10 g.t−1. This implies that the acid digestion method is suitable for quantifying gold from mine tailings without large uncertainties.
  • Thumbnail Image
    Item
    Topological rejection of noise by quantum skyrmions
    (Nature Research, 2025-03) Ornelas, Pedro; Forbes, Andrew; de Mello Koch, Robert
    An open challenge in the context of quantum information processing and communication is improving the robustness of quantum information to environmental contributions of noise, a severe hindrance in real-world scenarios. Here, we show that quantum skyrmions and their nonlocal topological observables remain resilient to noise even as typical entanglement witnesses and measures of the state decay. This allows us to introduce the notion of digitization of quantum information based on our discrete topological quantum observables, foregoing the need for robustness of entanglement. We compliment our experiments with a full theoretical treatment that unlocks the quantum mechanisms behind the topological behavior, explaining why the topology leads to robustness. Our approach holds exciting promise for intrinsic quantum information resilience through topology, highly applicable to real-world systems such as global quantum networks and noisy quantum computers.
  • Thumbnail Image
    Item
    A Technique to Solve a Parabolic Equation by Point Symmetries that Incorporate Initial Data
    (Springer, 2025-03) Jamal, Sameerah; Maphanga, Rivoningo
    In this paper, we show how transformation techniques coupled with a convolution integral can be used to solve a generalised option-pricing model, including the Black–Scholes model. Such equations are parabolic and the special convolutions are extremely involved as they arise from an initial value problem. New symmetries are derived to obtain solutions through an application of the invariant surface condition. The main outcome is that the point symmetries are effective in producing exact solutions that satisfy a given initial condition, such as those represented by a call-option.
  • Thumbnail Image
    Item
    Batch and semi-continuous fermentation with Parageobacillus thermoglucosidasius DSM 6285 for H2 production
    (BMC, 2025) de Maayer, Pieter; Ardila, Magda S.; Aliyu, Habibu; Neumann, Anke
    Background Parageobacillus thermoglucosidasius is a facultatively anaerobic thermophile that is able to produce hydrogen (H2) gas from the oxidation of carbon monoxide through the water–gas shift reaction when grown under anaerobic conditions. The water–gas shift (WGS) reaction is driven by a carbon monoxide dehydrogenase– hydrogenase enzyme complex. Previous experiments exploring hydrogenogenesis with P. thermoglucosidasius have relied on batch fermentations comprising defned media compositions and gas atmospheres. This study evaluated the efects of a semi-continuous feeding strategy on hydrogenogenesis. Results A batch and two semi-continuous fermentations, with feeding of the latter fresh media (with glucose) in either 24 h or 48 h intervals were undertaken and H2 production, carbon monoxide dehydrogenase (CODH) activity, and metabolite consumption/production were monitored throughout. Maximum H2 production rates (HPR) of 0.14 and 0.3 mmol min−1, were observed for the batch and the semi-continuous fermentations, respectively. Daily feeding attained stable H2 production for 7 days, while feeding every 48 h resulted in high variations in H2 production. CODH enzyme activity correlated with H2 production, with a maximum of 1651 U mL−1 on day 14 with the 48 h feeding strategy, while CODH activity remained relatively constant throughout the fermentation process with the 24 h feeding strategy. Conclusions The results emphasize the signifcance of a semi-continuous glucose-containing feed for attaining stable hydrogen production with P. thermoglucosidasius. The semi-continuous fermentations achieved a 46% higher HPR than the batch fermentation. The higher HPRs achieved with both semi-continuous fermentations imply that this approach could enhance the biohydrogen platform. However, optimizing the feeding interval is pivotal to ensuring stable hydrogen production.
  • Thumbnail Image
    Item
    New modern and Pleistocene fossil micromammal assemblages from Swartkrans, South Africa: Paleobiodiversity, taphonomic, and environmental context
    (Elsevier, 2024-03) Steininger, Christine; Clarke, Ronald J.; Caruana, Matthew V.; Kuman, Kathleen; Pickering, Travis Rayne; Linchamps, Pierre; Stoetzel, Emmanuelle; Amberny, Laurie
    The oldest deposit at the hominin-bearing cave of Swartkrans, South Africa, is the Lower Bank of Member 1, dated to ca. 2.2 million years ago. Excavations of this unit have produced a diverse and extensive mammalian fossil record, including Paranthropus robustus and early Homo fossils, along with numerous Oldowan stone tools. The present study focuses on the taxonomic analysis of the micromammalian fossil assemblage obtained from recent excavations of the Lower Bank, conducted between 2005 and 2010, as part of the Swartkrans Paleoanthropological Research Project. The taxonomic composition of this assemblage is dominated by Mystromys, a rodent indicative of grassland environments. Taphonomic analysis indicates an accumulation of prey by Tyto alba (Barn owl) or a related species. Environments inferred from this evidence reflect an open landscape primarily covered by grassland vegetation, but they also feature components of wooded areas, rocky outcrops, and the proximity of a river. The Swartkrans fossil assemblage is compared with Cooper's D (dated to ca. 1.4 Ma) and a modern coprocoenosis of Bubo africanus (spotted eagle-owl) collected within the Swartkrans cave for taxonomic, taphonomic, and paleoecological perspectives. Contrasting fossil and modern micromammalian data provide a better understanding of accumulation processes and facilitate a diachronic reconstruction of changes in climate and landscape evolution. Issues regarding paleoenvironmental reconstruction methodologies based on micromammals are also discussed.
  • Thumbnail Image
    Item
    Platinum-bearing chromite layers are caused by pressure reduction during magma ascent
    (Nature Research, 2018) Latypov, Rais; Costin, Gelu; Chistyakova, Sofya; Hunt, Emma J.; Mukherjee, Ria; Naldrett, Tony
    Platinum-bearing chromitites in mafic-ultramafic intrusions such as the Bushveld Complex are key repositories of strategically important metals for human society. Basaltic melts saturated in chromite alone are crucial to their generation, but the origin of such melts is controversial. One concept holds that they are produced by processes operating within the magma chamber, whereas another argues that melts entering the chamber were already saturated in chromite. Here we address the problem by examining the pressure-related changes in the topology of a Mg2SiO4–CaAl2Si2O8–SiO2–MgCr2O4 quaternary system and by thermodynamic modelling of crystallisation sequences of basaltic melts at 1–10 kbar pressures. We show that basaltic melts located adjacent to a so-called chromite topological trough in deep-seated reservoirs become saturated in chromite alone upon their ascent towards the Earth’s surface and subsequent cooling in shallow-level chambers. Large volumes of these chromite-only-saturated melts replenishing these chambers are responsible for monomineralic layers of massive chromitites with associated platinum-group elements.
  • Thumbnail Image
    Item
    Assessing runs of Homozygosity: a comparison of SNP Array and whole genome sequence low coverage data
    (BMC, 2018) Ceballos, Francisco C.; Hazelhurst, Scott; Ramsay, Michèle
    Background: Runs of Homozygosity (ROH) are genomic regions where identical haplotypes are inherited from each parent. Since their first detection due to technological advances in the late 1990s, ROHs have been shedding light on human population history and deciphering the genetic basis of monogenic and complex traits and diseases. ROH studies have predominantly exploited SNP array data, but are gradually moving to whole genome sequence (WGS) data as it becomes available. WGS data, covering more genetic variability, can add value to ROH studies, but require additional considerations during analysis. Results: Using SNP array and low coverage WGS data from 1885 individuals from 20 world populations, our aims were to compare ROH from the two datasets and to establish software conditions to get comparable results, thus providing guidelines for combining disparate datasets in joint ROH analyses. By allowing heterozygous SNPs per window, using the PLINK homozygosity function and non-parametric analysis, we were able to obtain non-significant differences in number ROH, mean ROH size and total sum of ROH between data sets using the different technologies for almost all populations. Conclusions: By allowing 3 heterozygous SNPs per ROH when dealing with WGS low coverage data, it is possible to establish meaningful comparisons between data using SNP array and WGS low coverage technologies.
  • Thumbnail Image
    Item
    Entanglement beating in free space through spin–orbit coupling
    (Springer Nature, 2018) Rosales-Guzmán, Carmelo; Denz, Cornelia; Otte, Eileen; Ndagano, Bienvenu; Forbes, Andrew
    It is well known that the entanglement of a quantum state is invariant under local unitary transformations. This rule dictates, for example, that the entanglement of internal degrees of freedom of a photon remains invariant during free-space propagation. Here, we outline a scenario in which this paradigm does not hold. Using local Bell states engineered from classical vector vortex beams with non-separable degrees of freedom, the so-called classically entangled states, we demonstrate that the entanglement evolves during propagation, oscillating between maximally entangled (purely vector) and product states (purely scalar). We outline the spin–orbit interaction behind these novel propagation dynamics and confirm the results experimentally, demonstrating spin–orbit coupling in paraxial beams. This demonstration highlights a hitherto unnoticed property of classical entanglement and simultaneously offers a device for the on-demand delivery of vector states to targets, for example, for dynamic laser materials processing, switchable resolution within stimulated emission depletion (STED) systems, and a tractor beam for entanglement.
  • Thumbnail Image
    Item
    Towards multiscale and multisource remote sensing mineral exploration using rpas: A case study in the lofdal carbonatite-hosted ree deposit, Namibia
    (MDPI, Basel, Switzerland, 2019) Booysen, René; Nex, Paul A.M.; Zimmermann, Robert; Lorenz, Sandra; Gloaguen, Richard; Andreani, Louis; Möckel, Robert
    Traditional exploration techniques usually rely on extensive field work supported by geophysical ground surveying. However, this approach can be limited by several factors such as field accessibility, financial cost, area size, climate, and public disapproval. We recommend the use of multiscale hyperspectral remote sensing to mitigate the disadvantages of traditional exploration techniques. The proposed workflow analyzes a possible target at different levels of spatial detail. This method is particularly beneficial in inaccessible and remote areas with little infrastructure, because it allows for a systematic, dense and generally noninvasive surveying. After a satellite regional reconnaissance, a target is characterized in more detail by plane-based hyperspectral mapping. Subsequently, Remotely Piloted Aircraft System (RPAS)-mounted hyperspectral sensors are deployed on selected regions of interest to provide a higher level of spatial detail. All hyperspectral data are corrected for radiometric and geometric distortions. End-member modeling and classification techniques are used for rapid and accurate lithological mapping. Validation is performed via field spectroscopy and portable XRF as well as laboratory geochemical and spectral analyses. The resulting spectral data products quickly provide relevant information on outcropping lithologies for the field teams. We show that the multiscale approach allows defining the promising areas that are further refined using RPAS-based hyperspectral imaging. We further argue that the addition of RPAS-based hyperspectral data can improve the detail of field mapping in mineral exploration, by bridging the resolution gap between airplane- and ground-based data. RPAS-based measurements can supplement and direct geological observation rapidly in the field and therefore allow better integration with in situ ground investigations. We demonstrate the efficiency of the proposed approach at the Lofdal Carbonatite Complex in Namibia, which has been previously subjected to rare earth elements exploration. The deposit is located in a remote environment and characterized by difficult terrain which limits ground surveys.