Faculty of Science (Research Outputs)

Permanent URI for this communityhttps://hdl.handle.net/10539/38025

For queries relating to content and technical issues, please contact IR specialists via this email address : openscholarship.library@wits.ac.za, Tel: 011 717 4652 or 011 717 1954

Browse

Search Results

Now showing 1 - 10 of 11
  • Thumbnail Image
    Item
    Generalized hot attractors
    (Springer, 2019-03) Goldstein, Kevin; Jejjala, Vishnu; Mashiyane, James Junior; Nampuri Suresh
    Non-extremal black holes are endowed with geometric invariants related to their horizon areas. We extend earlier work on hot attractor black holes to higher dimensions and add a scalar potential. In addition to the event and Cauchy horizons, when we complexify the radial coordinate, non-extremal black holes will generically have other horizons as well. We prove that the product of all of the horizon areas is independent of variations of the asymptotic moduli further generalizing the attractor mechanism for extremal black holes. In the presence of a scalar potential, as typically appears in gauged supergravity, we find that the product of horizon areas is not necessarily the geometric mean of the extremal area, however. We outline the derivation of horizon invariants for stationary backgrounds.
  • Thumbnail Image
    Item
    A tunable Josephson platform to explore many-body quantum optics in circuit-QED
    (Nature Research, 2019-02) Snyman, Izak; Martínez, Javier Puertas; Léger, Sébastien; Gheeraert, Nicolas; Dassonneville, Rémy; Planat, Luca; Foroughi, Farshad; Krupko, Yuriy; Buisson, Olivier; Naud, Cécile; Hasch-Guichard, Wiebke; Florens, Serge; Roch, Nicolas
    The interaction between light and matter remains a central topic in modern physics despite decades of intensive research. Coupling an isolated emitter to a single mode of the electromagnetic field is now routinely achieved in the laboratory, and standard quantum optics provides a complete toolbox for describing such a setup. Current efforts aim to go further and explore the coherent dynamics of systems containing an emitter coupled to several electromagnetic degrees of freedom. Recently, ultrastrong coupling to a transmission line has been achieved where the emitter resonance broadens to a significant fraction of its frequency, and hybridizes with a continuum of electromagnetic (EM) modes. In this work we gain significantly improved control over this regime. We do so by combining the simplicity and robustness of a transmon qubit and a bespoke EM environment with a high density of discrete modes, hosted inside a superconducting metamaterial. This produces a unique device in which the hybridisation between the qubit and many modes (up to ten in the current device) of its environment can be monitored directly. Moreover the frequency and broadening of the qubit resonance can be tuned independently of each other in situ. We experimentally demonstrate that our device combines this tunability with ultrastrong coupling and a qubit nonlinearity comparable to the other relevant energy scales in the system. We also develop a quantitative theoretical description that does not contain any phenomenological parameters and that accurately takes into account vacuum fluctuations of our large scale quantum circuit in the regime of ultrastrong coupling and intermediate non-linearity. The demonstration of this new platform combined with a quantitative modelling brings closer the prospect of experimentally studying many-body effects in quantum optics. A limitation of the current device is the intermediate nonlinearity of the qubit. Pushing it further will induce fully developed many-body effects, such as a giant Lamb shift or nonclassical states of multimode optical fields. Observing such effects would establish interesting links between quantum optics and the physics of quantum impurities
  • Thumbnail Image
    Item
    Chemical analysis of low grade gold from mine tailings after size fractionation and acid digestion using reverse aqua regia
    (Nature Research, 2025-03) Chimuka, Luke; Tshilongo, James; Mashale, Kedibone Nicholine; Sehata, James; Ntsasa, Napo Godwill
    The growing interest in reprocessing mine tailings for gold recovery requires a suitable quantification method that is accurate, rapid, and not harsh to the environment. Acid digestion is often used to determination of gold; however, it often faces the challenge of incomplete digestion due to the presence of minerals such as quartz, and homogeneity is compromised due to small sample masses, which can result in low bias. This study investigated a shorter acid digestion method employing reverse aqua regia, both in the presence and absence of hydrofluoric acid. Before digestion, the sample was subjected to gold depot analysis, which showed that 78% was free-milling gold and that only 0.8% was associated with pyrite, increasing the chances of accurate quantifications. Furthermore, the size screening test showed that most of the gold could be recovered on the −38 μm screen. This proposed method provided good linearity (5–100 µg. L−1) and low detection limits (0.139–0.183 µg.kg−1). The concentrations obtained by the acid digestion was 0.258 g.t−1 with the recoveries ranging between 80% and 82%, which fit the criteria set. The method also worked well for the certified reference materials (CRM), AMIS 610 (accurate value=0.068 g.t−1) and AMIS 646 (accurate value=0.166 g.t−1), which are of a similar matrix and are also lower in grade compared to the sample. The method was also evaluated for uncertainty (±value) using the bottom-up approach, and the expanded uncertainty (k=2) was reported to be 0.258±0.092 g.t−1, which was comparable to that offered by the fire assay with the ICP‒OES finish, which was 0.28±0.10 g.t−1. This implies that the acid digestion method is suitable for quantifying gold from mine tailings without large uncertainties.
  • Thumbnail Image
    Item
    Topological rejection of noise by quantum skyrmions
    (Nature Research, 2025-03) Ornelas, Pedro; Forbes, Andrew; de Mello Koch, Robert
    An open challenge in the context of quantum information processing and communication is improving the robustness of quantum information to environmental contributions of noise, a severe hindrance in real-world scenarios. Here, we show that quantum skyrmions and their nonlocal topological observables remain resilient to noise even as typical entanglement witnesses and measures of the state decay. This allows us to introduce the notion of digitization of quantum information based on our discrete topological quantum observables, foregoing the need for robustness of entanglement. We compliment our experiments with a full theoretical treatment that unlocks the quantum mechanisms behind the topological behavior, explaining why the topology leads to robustness. Our approach holds exciting promise for intrinsic quantum information resilience through topology, highly applicable to real-world systems such as global quantum networks and noisy quantum computers.
  • Thumbnail Image
    Item
    A Technique to Solve a Parabolic Equation by Point Symmetries that Incorporate Initial Data
    (Springer, 2025-03) Jamal, Sameerah; Maphanga, Rivoningo
    In this paper, we show how transformation techniques coupled with a convolution integral can be used to solve a generalised option-pricing model, including the Black–Scholes model. Such equations are parabolic and the special convolutions are extremely involved as they arise from an initial value problem. New symmetries are derived to obtain solutions through an application of the invariant surface condition. The main outcome is that the point symmetries are effective in producing exact solutions that satisfy a given initial condition, such as those represented by a call-option.
  • Thumbnail Image
    Item
    Batch and semi-continuous fermentation with Parageobacillus thermoglucosidasius DSM 6285 for H2 production
    (BMC, 2025) de Maayer, Pieter; Ardila, Magda S.; Aliyu, Habibu; Neumann, Anke
    Background Parageobacillus thermoglucosidasius is a facultatively anaerobic thermophile that is able to produce hydrogen (H2) gas from the oxidation of carbon monoxide through the water–gas shift reaction when grown under anaerobic conditions. The water–gas shift (WGS) reaction is driven by a carbon monoxide dehydrogenase– hydrogenase enzyme complex. Previous experiments exploring hydrogenogenesis with P. thermoglucosidasius have relied on batch fermentations comprising defned media compositions and gas atmospheres. This study evaluated the efects of a semi-continuous feeding strategy on hydrogenogenesis. Results A batch and two semi-continuous fermentations, with feeding of the latter fresh media (with glucose) in either 24 h or 48 h intervals were undertaken and H2 production, carbon monoxide dehydrogenase (CODH) activity, and metabolite consumption/production were monitored throughout. Maximum H2 production rates (HPR) of 0.14 and 0.3 mmol min−1, were observed for the batch and the semi-continuous fermentations, respectively. Daily feeding attained stable H2 production for 7 days, while feeding every 48 h resulted in high variations in H2 production. CODH enzyme activity correlated with H2 production, with a maximum of 1651 U mL−1 on day 14 with the 48 h feeding strategy, while CODH activity remained relatively constant throughout the fermentation process with the 24 h feeding strategy. Conclusions The results emphasize the signifcance of a semi-continuous glucose-containing feed for attaining stable hydrogen production with P. thermoglucosidasius. The semi-continuous fermentations achieved a 46% higher HPR than the batch fermentation. The higher HPRs achieved with both semi-continuous fermentations imply that this approach could enhance the biohydrogen platform. However, optimizing the feeding interval is pivotal to ensuring stable hydrogen production.
  • Thumbnail Image
    Item
    New modern and Pleistocene fossil micromammal assemblages from Swartkrans, South Africa: Paleobiodiversity, taphonomic, and environmental context
    (Elsevier, 2024-03) Steininger, Christine; Clarke, Ronald J.; Caruana, Matthew V.; Kuman, Kathleen; Pickering, Travis Rayne; Linchamps, Pierre; Stoetzel, Emmanuelle; Amberny, Laurie
    The oldest deposit at the hominin-bearing cave of Swartkrans, South Africa, is the Lower Bank of Member 1, dated to ca. 2.2 million years ago. Excavations of this unit have produced a diverse and extensive mammalian fossil record, including Paranthropus robustus and early Homo fossils, along with numerous Oldowan stone tools. The present study focuses on the taxonomic analysis of the micromammalian fossil assemblage obtained from recent excavations of the Lower Bank, conducted between 2005 and 2010, as part of the Swartkrans Paleoanthropological Research Project. The taxonomic composition of this assemblage is dominated by Mystromys, a rodent indicative of grassland environments. Taphonomic analysis indicates an accumulation of prey by Tyto alba (Barn owl) or a related species. Environments inferred from this evidence reflect an open landscape primarily covered by grassland vegetation, but they also feature components of wooded areas, rocky outcrops, and the proximity of a river. The Swartkrans fossil assemblage is compared with Cooper's D (dated to ca. 1.4 Ma) and a modern coprocoenosis of Bubo africanus (spotted eagle-owl) collected within the Swartkrans cave for taxonomic, taphonomic, and paleoecological perspectives. Contrasting fossil and modern micromammalian data provide a better understanding of accumulation processes and facilitate a diachronic reconstruction of changes in climate and landscape evolution. Issues regarding paleoenvironmental reconstruction methodologies based on micromammals are also discussed.
  • Thumbnail Image
    Item
    Towards multiscale and multisource remote sensing mineral exploration using rpas: A case study in the lofdal carbonatite-hosted ree deposit, Namibia
    (MDPI, Basel, Switzerland, 2019) Booysen, René; Nex, Paul A.M.; Zimmermann, Robert; Lorenz, Sandra; Gloaguen, Richard; Andreani, Louis; Möckel, Robert
    Traditional exploration techniques usually rely on extensive field work supported by geophysical ground surveying. However, this approach can be limited by several factors such as field accessibility, financial cost, area size, climate, and public disapproval. We recommend the use of multiscale hyperspectral remote sensing to mitigate the disadvantages of traditional exploration techniques. The proposed workflow analyzes a possible target at different levels of spatial detail. This method is particularly beneficial in inaccessible and remote areas with little infrastructure, because it allows for a systematic, dense and generally noninvasive surveying. After a satellite regional reconnaissance, a target is characterized in more detail by plane-based hyperspectral mapping. Subsequently, Remotely Piloted Aircraft System (RPAS)-mounted hyperspectral sensors are deployed on selected regions of interest to provide a higher level of spatial detail. All hyperspectral data are corrected for radiometric and geometric distortions. End-member modeling and classification techniques are used for rapid and accurate lithological mapping. Validation is performed via field spectroscopy and portable XRF as well as laboratory geochemical and spectral analyses. The resulting spectral data products quickly provide relevant information on outcropping lithologies for the field teams. We show that the multiscale approach allows defining the promising areas that are further refined using RPAS-based hyperspectral imaging. We further argue that the addition of RPAS-based hyperspectral data can improve the detail of field mapping in mineral exploration, by bridging the resolution gap between airplane- and ground-based data. RPAS-based measurements can supplement and direct geological observation rapidly in the field and therefore allow better integration with in situ ground investigations. We demonstrate the efficiency of the proposed approach at the Lofdal Carbonatite Complex in Namibia, which has been previously subjected to rare earth elements exploration. The deposit is located in a remote environment and characterized by difficult terrain which limits ground surveys.
  • Thumbnail Image
    Item
    Accurate hyperspectral imaging of mineralised outcrops: An example from lithium-bearing pegmatites at Uis, Namibia
    (Elsevier Inc, 2021) Booysen, René; Nex, Paul A.M.; Lorenz, Sandra; Thiele, Samuel T.; Fuchsloch, Warrick C.; Marais, Timothy; Gloaguen, Richard
    Efficient, socially acceptable and rapid methods of exploration are required to discover new deposits and enable the green energy transition. Sustainable exploration requires a combination of innovative thinking and new technologies. Hyperspectral imaging (HSI) is a rapidly developing technology and allows for fast and systematic mineral mapping, facilitating exploration of the Earth’s surface at various scales on a variety of platforms. Newly available sensors allow data capture over a wide spectral range, and provide information about the abundance and spatial location of ore and pathfinder minerals in drill-core, hand samples and outcrops with mm to cm precision. Conversely, the complex geometries of the imaged surfaces affect the spectral quality and signal-to-noise ratio (SnR) of HSI data at these very narrow spatial samplings. Additionally, the complex mineral assemblages found in hydrothermally altered ore deposits can make interpretation of spectral results a challenge. In this contribution, we propose an innovative approach that integrates multiple sensors and scales of data acquisition to help disentangle complex mineralogy associated with lithium and tin mineralisation in the Uis pegmatite complex, Namibia. We train this method using hand samples and finally produce a three-dimensional (3D) point cloud for mapping lithium mineralisation in the open pit. We were able to identify and map lithium-bearing cookeite and montebrasite at outcrop scale. The accuracy of the approach was validated by drill-core data, XRD analysis and LIBS measurements. This approach facilitates efficient mapping of complex terrains, as well as important monitoring and optimisation of ore extraction. Our method can easily be adapted to other minerals relevant to the mining industry.
  • Thumbnail Image
    Item
    Detection of REEs with lightweight UAV‑based hyperspectral imaging
    (Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations., 2020) Booysen, René; Nex, Paul A.M.; Zimmermann, Robert; Loren, Sandra; Kirsch, Moritz; Jackish, Robert; Gloaguen, Richard
    Rare earth elements (REEs) supply is important to ensure the energy transition, e-mobility and ultimately to achieve the sustainable development goals of the United Nations. Conventional exploration techniques usually rely on substantial geological field work including dense in-situ sampling with long delays until provision of analytical results. However, this approach is limited by land accessibility, financial status, climate and public opposition. Efficient and innovative methods are required to mitigate these limitations. The use of lightweight unmanned aerial vehicles (UAVs) provides a unique opportunity to conduct rapid and non-invasive exploration even in socially sensitive areas and in relatively inaccessible locations. We employ drones with hyperspectral sensors to detect REEs at the earth’s surface and thus contribute to a rapidly evolving field at the cutting edge of exploration technologies. We showcase for the first time the direct mapping of REEs with lightweight hyperspectral UAV platforms. Our solution has the advantage of quick turn-around times (< 1 d), low detection limits (< 200 ppm for Nd) and is ideally suited to support exploration campaigns. This procedure was successfully tested and validated in two areas: Marinkas Quellen, Namibia, and Siilinjärvi, Finland. This strategy should invigorate the use of drones in exploration and for the monitoring of mining activities.