School of Chemistry
Permanent URI for this communityhttps://wiredspace.wits.ac.za/handle/10539/21118
Browse
5 results
Search Results
Item The effect of temperature and methanol-water mixture on pressurized hot water extraction (PHWE) of anti-HIV analogoues from Bidens pilosa(BioMed Central Ltd., 2016-06) Gbashi, S.; Njobeh, P.; Steenkamp, P.; Tutu, H.; Madala, N.Background: Pressurized hot water extraction (PHWE) technique has recently gain much attention for the extraction of biologically active compounds from plant tissues for analytical purposes, due to the limited use of organic solvents, its cost-effectiveness, ease-of-use and efficiency. An increase in temperature results in higher yields, however, issues with degradation of some metabolites (e.g. tartrate esters) when PHWE is conditioned at elevated temperatures has greatly limited its use. In this study, we considered possibilities of optimizing PHWE of some specific functional metabolites from Bidens pilosa using solvent compositions of 0, 20, 40 and 60 % methanol and a temperature profile of 50, 100 and 150 °C. Results: The extracts obtained were analyzed using UPLC-qTOF-MS/MS and the results showed that both temperature and solvent composition were critical for efficient recovery of target metabolites, i.e., dicaffeoylquinic acid (diCQA) and chicoric acid (CA), which are known to possess anti-HIV properties. It was also possible to extract different isomers (possibly cis-geometrical isomers) of these molecules. Significantly differential (p ≤ 0.05) recovery patterns corresponding to the extraction conditions were observed as recovery increased with increase in methanol composition as well as temperature. The major compounds recovered in descending order were 3,5-diCQA with relative peak intensity of 204.23 ± 3.16 extracted at 50 °C and 60 % methanol; chicoric acid (141.00 ± 3.55) at 50 °C and 60 % methanol; 4,5-diCQA (108.05 ± 4.76) at 150 °C and 0 % methanol; 3,4-diCQA (53.04 ± 13.49) at 150 °C and 0 % methanol; chicoric acid isomer (40.01 ± 1.14) at 150 °C and 20 % methanol; and cis-3,5-diCQA (12.07 ± 5.54) at 100 °C and 60 % methanol. Fitting the central composite design response surface model to our data generated models that fit the data well with R2 values ranging from 0.57 to 0.87. Accordingly, it was possible to observe on the response surface plots the effects of temperature and solvent composition on the recovery patterns of these metabolites as well as to establish the optimum extraction conditions. Furthermore, the pareto charts revealed that methanol composition had a stronger effect on extraction yield than temperature. Conclusion: Using methanol as a co-solvent resulted in significantly higher (p ≤ 0.05) even at temperatures as low as 50 °C, thus undermining the limitation of thermal degradation at higher temperatures during PHWE.Item Removal of uranium from aqueous solutions using ammonium-modified zeolite(South African Chemical Institute, 2015) Bakatula, E.N.; Mosai, A.K.; Tutu, H.Batch experiments were conducted to study the effects of contact time, pH (3 to 8), initial concentration, presence of carbonate, sulphate, and competing ions (Fe3+, Ca2+, Sr2+, Mg2+) on the adsorption of U(VI) on ammonium-modified zeolite (AMZ). The structural features of the modified zeolite were assessed by Fourier Transform Infra Red Spectroscopy (FTIR) while the metal content was determined by Inductively Coupled Plasma Optical Emission Specroscopy (ICP-OES). The removal of uranium was effective and maximal under acidic conditions (pH 3 to 5). The kinetics of adsorption of U-nitrate and U-sulphate on AMZ were described by the pseudo-second-order model (R2 ≥ 0.9820). In the presence of SO4 2- and CO3 2-, a significant reduction of 67.88 % and 71.63 %, respectively, in uranium uptake was observed. The distribution coefficient, KD (L g-1), was in the order of: U-nitrate (1.116) > U-sulphate (0.029) > U-carbonate (0.019), suggesting that AMZ had a high affinity for U-nitrate. The presence of Fe3+ enhanced the removal of U(VI) from U-nitrate, U-sulphate and U-carbonate by 20.18 %, 72.48 % and 82.43 %, respectively, while the presence of Ca2+, Mg2+ and Sr2+ reduced the removal to 19.57 %, 31.60 % and 23.65 %, respectively. AMZ is an effective adsorbent for uranium removal from aqueous solutions dominated by nitrate, carbonate and sulphate.Item Passive remediation of acid mine drainage using cryptocrystalline magnesite: A batch experimental and geochemical modelling approach(South African Water Research Commission, 2015-10) Masindi, V.; Gitari, M.W.; Tutu, H.; De Beer, M.Acid mine drainage is generated when mining activities expose sulphidic rock to water and oxygen leading to generation of sulphuric acid effluents rich in Fe, Al, SO4 and Mn with minor concentrations of Zn, Cu, Mg, Ca, Pb depending on the geology of the rock hosting the minerals. These effluents must be collected and treated before release into surface water bodies. Mining companies are in constant search for cheaper, effective and efficient mine water treatment technologies. This study assessed the potential of applying magnesite as an initial remediation step in an integrated acid mine drainage (AMD) management system. Neutralization and metal attenuation was evaluated using batch laboratory experiments and simulations using geochemical modelling. Contact of AMD with cryptocrystalline magnesite for 60 min at 1 g: 100 mℓ S/L ratio led to an increase in pH, and a significant increase in metals attenuation. Sulphate concentration was reduced to ≈1 910 mg/ℓ. PH redox equilibrium (in C language) (PHREEQC) geochemical modelling results showed that metals precipitated out of solution to form complex mineral phases of oxy-hydroxysulphates, hydroxides, gypsum and dolomite. The results of this study showed that magnesite has potential to neutralize AMD, leading to the reduction of sulphate and precipitation of metals.Item Leachability of metals from gold tailings by rainwater: An experimental and geochemical modelling approach.(South African Water Research Commission, 2016-01) Grover, B.P.C.; Johnson, R.H.; Tutu, H.Mine leachates from gold tailings impoundments usually contain elevated concentrations of metals and sulphates that impact negatively on water quality. This study was aimed at assessing the leachability of such metals from tailings by rainwater. Oxidised and unoxidised tailings were leached experimentally and through simulations using the PHREEQC geochemical modelling code. The results revealed that the majority of readily leachable metals were held in secondary mineral phases, mainly sulphates. A good agreement between experimental and modelling techniques was obtained, indicating the potential use of geochemical modelling in future metal release studies for the site. A list of reactive minerals for the tailings material was compiled. These minerals may or may not be present in the tailings; however, the list provides a means of estimating future reactivity or bulk metal release from the tailings.Item Column adsorption studies for the removal of U by phosphonated cross-linked polyethylenimine: modelling and optimization.(Springer, 2015-03) Saad, D.M.; Cukrowska, E.; Tutu, H.A continuous fixed-bed adsorption study was carried out by using phosphonated cross-linked polyethylenimine as an adsorbent for the removal of uranium (U) from aqueous solutions. The effect of inlet metal ion concentration (40, 70, and 100 mg L-1), feed flow rate (1, 2, and 3 mL min(-1)), and polymer bed height (2.5, 3.2 and 4.5 cm) on the breakthrough characteristics of the fixed-bed adsorption system at pH 2 were studied. The results showed that the breakthrough time appeared to increase with increase of bed height but decreased with increase of both influent U concentration and flow rate. Modelling of the dynamics of the fixed-bed adsorption process was studied and the application of different models to describe the breakthrough curves showed that the Thomas and Yoon-Nelson model gave better results for the operating conditions.