Wits Evolutionary Studies Institute (ESI)
Permanent URI for this communityhttps://wiredspace.wits.ac.za/handle/10539/13252
For queries relating to content and technical issues, please contact IR specialists via this email address : openscholarship.library@wits.ac.za, Tel: 011 717 4652 or 011 717 1954
Browse
557 results
Search Results
Item manual(DURASPACE, 2005-08-17) Diol, JoeItem An Acheulean handaxe from Gladysvale Cave site, Gauteng, South Africa.(Academy of Science of South Africa (ASSAf), 2006-03) Hall, G.; Pickering, R.; Lacruz, R.; Hancox, J.; Berger, L.R.; Schmid, P.WE DESCRIBE A SINGLE HANDAXE FROM fossiliferous breccias at Gladysvale Cave, South Africa. The artefact is the only known tool so far discovered during the controlled excavations conducted at this site over the last decade, and was recovered from decalcified sediments near the stratigraphic interface of two breccia units, making it difficult to assign it with confidence to either. The morphology of the handaxe indicates a middle-late Acheulean industry, and preliminary electron spin resonance and palaeomagnetic dating suggest an age of greater than 780 000 years.Item A partial skull of Paranthropus robustus from Cooper's Cave, South Africa.(Academy of Science of South Africa (ASSAf), 2008-03) Berger, L.R.; Kuhn, B.F.; Steininger, C.A partial hominin skull (COB 101) was identified in the fossil collections of the Transvaal Museum, Pretoria, attributed to the Cooper's Cave site in South Africa. The find represents the most complete hominin specimen recovered from localities at this site to date. COB 101 comprises the supraorbital, zygomatic, infraorbital and nasoalveolar regions of the right side, and the right upper third premolar. The specimen has undergone post-depositional distortion that resulted in the flattening of the facial structures. Here we describe and compare COB 101 with other hominin material from Africa and find that this specimen shares numerous diagnostic features with Paranthropus robustus. The discovery of COB 101 augments the number of specimens attributed to this species from other South African sites and other Cooper's Cave localities.Item 3D techniques and fossil identification: An elephant shrew hemi-mandible from the Malapa site.(Academy of Science of South Africa (ASSAf), 2011-11-07) Val, A.; Carlson, K.J; Kibii, J.M.; Steininger, C.; Churms, C.; Kuhn, B.F.; Berger, L.R.Conventional methods for extracting fossilised bones from calcified clastic sediments, using air drills or chemical preparations, can damage specimens to the point of rendering them unidentifiable. As an alternative, we tested an in silico approach that extended preparation and identification possibilities beyond those realisable using physical methods, ultimately proving to be crucial in identifying a fragile fossil. Image data from a matrix-encased hemi-mandible of a micromammal that was collected from the Plio-Pleistocene site of Malapa, Cradle of Humankind, South Africa, were acquired using microtomography. From the resultant images, a 3D rendering of the fossil was digitally segmented. Diagnostic morphologies were evaluated on the rendering for comparison with extant comparative specimens, positively identifying the specimen as an elephant shrew (Elephantulus sp.). This specimen is the first positively identified micromammal in the Malapa faunal assemblage. Cutting-edge in silico preparation technology provides a novel tool for identifying fossils without endangering bone integrity, as is commonly risked with physical preparation.Item Cranial description and taxonomic re-evaluation of Kannemeyeria argintinensis (Therapsida: Dicynodontia)(Bernard Price Institute for Palaeontological Research, 2001) Renaut, Hancox, PJ AJExamination of the holotype skull of the Triassic dicynodont Kannemeyeria argentinensis Bonaparte reveals that many of purported diagnostic characters are distortion-related. A redescription of the holotype indicates that its inclusion in the genus Kannemeyeria cannot be supported. Several characters are, however, identical to the Argentine taxon Vinceria, and we suggest that the two taxa may be congeneric. This finding challenges the validity of a global Kannemeyeria-biochron, but not necessarily the relationships of tetrapod faunal groups in South America and Africa.Item Further evidence for eagle predation of, and feeding damage on, the Taung child.(ASSAf, 2007-11) Berger, L.R.; McGraw, W.S.We present new evidence supporting the hypothesis that a large raptor was responsible for the death of the c. 2.0-Myr-old Taung child, holotype of the early hominin species Australopithecus africanus. We compare the Taung child's skull with those of monkeys killed and eaten by modern crowned eagles, Stephanoaetus coronatus, in the Ivory Coast's Tai Forest. Close inspection of primate feeding remains from these large, powerful raptors reveals scratch marks in the orbital, frontal, temporal, parietal and occipital regions. Scratches similar in size and distribution are also present on the Taung child's skull. The new taphonomic evidence, combined with previously recognized similarities in breakage patterns and other assemblage characteristics, bolsters the case that a large bird of prey was responsible for the death of the juvenile hominin from Taung.Item Small-bodied humans from Palau, Micronesia.(Public Library of Science, 2008-03-12) Berger, L.R.; De Klerk, B.; Quinn, R.L.; Churchill, S.E.Newly discovered fossil assemblages of small bodied Homo sapiens from Palau, Micronesia possess characters thought to be taxonomically primitive for the genus Homo. Background: Recent surface collection and test excavation in limestone caves in the the rock islands of Palau, Micronesia, has produced a sizeable sample of human skeletal remains dating roughly between 940-2890 cal ybp. Principle Findings: Preliminary analysis indicates that this material is important for two reasons. First, Individuals from the older time horizons are small in body size even relative to "pygmoid" populations from Southeast Asia and Indonesia, and thus may represent a marked case of human insular dwarfism. Second, while possessing a number of derived features that align them with Homo sapiens, the human remains from Palau also exhibit several skeletal traits that are considered to be primitive for the genus Homo. Significance. These features may be previously unrecognized developmental correlates of small body size and, if soo, they may have important implications for interpreting the taxonomic affinities of fossil specimens of Homo.Item Carnivoran remains from the Malapa hominin site, South Africa.(Public Library of Science, 2011-11-03) Kuhn, B.F.; Werdelin, L.; Hartstone-Rose, A.; Lacruz, R.S.; Berger, L.R.Recent discoveries at the new hominin-bearing deposits of Malapa, South Africa, have yielded a rich faunal assemblage associated with the newly described hominin taxon Australopithecus sediba. Dating of this deposit using U-Pb and palaeomagnetic methods has provided an age of 1.977 Ma, being one of the most accurately dated, time constrained deposits in the Plio-Pleistocene of southern Africa. To date, 81 carnivoran specimens have been identified at this site including members of the families Canidae, Viverridae, Herpestidae, Hyaenidae and Felidae. Of note is the presence of the extinct taxon Dinofelis cf. D. barlowi that may represent the last appearance date for this species. Extant large carnivores are represented by specimens of leopard (Panthera pardus) and brown hyaena (Parahyaena brunnea). Smaller carnivores are also represented, and include the genera Atilax and Genetta, as well as Vulpes cf. V. chama. Malapa may also represent the first appearance date for Felis nigripes (Black-footed cat). The geochronological age of Malapa and the associated hominin taxa and carnivoran remains provide a window of research into mammalian evolution during a relatively unknown period in South Africa and elsewhere. In particular, the fauna represented at Malapa has the potential to elucidate aspects of the evolution of Dinofelis and may help resolve competing hypotheses about faunal exchange between East and Southern Africa during the late Pliocene or early Pleistocene.Item Palaeontologia africana Volume 46(Bernard Price Institute for Palaeontological Research, 2011)Item Palaeontologia africana Volume 45(Bernard Price Institute for Palaeontological Research, 2010)