Wits Evolutionary Studies Institute (ESI)
Permanent URI for this communityhttps://wiredspace.wits.ac.za/handle/10539/13252
Browse
3 results
Search Results
Item Discovering Hominins - Application of Medical Computed Tomography (CT) to Fossil-Bearing Rocks from the Site of Malapa, South Africa.(Public Library of Science, 2015-12-18) Smilg, J.S.; Berger, L.R.; Smilg, Jacqueline S.In the South African context, computed tomography (CT) has been used applied to individually prepared fossils and small rocks containing fossils, but has not been utilized on large breccia blocks as a means of discovering fossils, and particularly fossil hominins. Previous attempts at CT imaging of rocks from other South African sites for this purpose yielded disappointing results. For this study, 109 fossil- bearing rocks from the site of Malapa, South Africa were scanned with medical CT prior to manual preparation. The resultant images were assessed for accuracy of fossil identification and characterization against the standard of manual preparation. The accurate identification of fossils, including those of early hominins, that were not visible on the surface of individual blocks, is shown to be possible. The discovery of unexpected fossils is reduced, thus lowering the potential that fossils could be damaged through accidental encounter during routine preparation, or even entirely missed. This study should significantly change the way fossil discovery, recovery and preparation is done in the South African context and has potential for application in other palaeontological situations. Medical CT imaging is shown to be reliable, readily available, cost effective and accurate in finding fossils within matrix conglomerates. Improvements in CT equipment and in CT image quality are such that medical CT is now a viable imaging modality for this palaeontological application.Item Earliest hominin cancer: 1.7-million-year- old osteosarcoma from Swartkrans Cave, South Africa(Academy of Science of South Africa (ASSAf), 2016-07) Odes, E.J.; Randolph-Quinney, P.S.; Steyn, M.; Thockmorton, Z.; Smilg, J.S.; Zipfel, B.; Augustine, T.N.; de Beer, F.; Hoffman, J.W.; Franklin, R.D.; Berger, L.R.The reported incidence of neoplasia in the extinct human lineage is rare, with only a few confirmed cases of Middle or Later Pleistocene dates reported. It has generally been assumed that premodern incidence of neoplastic disease of any kind is rare and limited to benign conditions, but new fossil evidence suggests otherwise. We here present the earliest identifiable case of malignant neoplastic disease from an early human ancestor dated to 1.8–1.6 million years old. The diagnosis has been made possible only by advances in 3D imaging methods as diagnostic aids. We present a case report based on re-analysis of a hominin metatarsal specimen (SK 7923) from the cave site of Swartkrans in the Cradle of Humankind, South Africa. The expression of malignant osteosarcoma in the Swartkrans specimen indicates that whilst the upsurge in malignancy incidence is correlated with modern lifestyles, there is no reason to suspect that primary bone tumours would have been any less frequent in ancient specimens. Such tumours are not related to lifestyle and often occur in younger individuals. As such, malignancy has a considerable antiquity in the fossil record, as evidenced by this specimen.Item Osteogenic tumour in Australopithecus sediba: Earliest hominin evidence for neoplastic disease(Academy of Science of South Africa (ASSAf)., 2016-07) Randolph-Quinney, P.S.; Williams, S.A.; Steyn, M.; Meyer, M.R.; Smilg, J.S.; Churchill, S.E.; Odes, E.J.; Augustine, T.; Tafforeau, P.; Berger, L.R.We describe the earliest evidence for neoplastic disease in the hominin lineage. This is reported from the type specimen of the extinct hominin Australopithecus sediba from Malapa, South Africa, dated to 1.98 million years ago. The affected individual was male and developmentally equivalent to a human child of 12 to 13 years of age. A penetrating lytic lesion affected the sixth thoracic vertebra. The lesion was macroscopically evaluated and internally imaged through phase-contrast X-ray synchrotron microtomography. A comprehensive differential diagnosis was undertaken based on gross- and micro-morphology of the lesion, leading to a probable diagnosis of osteoid osteoma. These neoplasms are solitary, benign, osteoid and bone-forming tumours, formed from well-vascularised connective tissue within which there is active production of osteoid and woven bone. Tumours of any kind are rare in archaeological populations, and are all but unknown in the hominin record, highlighting the importance of this discovery. The presence of this disease at Malapa predates the earliest evidence of malignant neoplasia in the hominin fossil record by perhaps 200 000 years.