Wits Evolutionary Studies Institute (ESI)

Permanent URI for this communityhttps://wiredspace.wits.ac.za/handle/10539/13252

For queries relating to content and technical issues, please contact IR specialists via this email address : openscholarship.library@wits.ac.za, Tel: 011 717 4652 or 011 717 1954

Browse

Search Results

Now showing 1 - 10 of 19
  • Thumbnail Image
    Item
    Discovering Hominins - Application of Medical Computed Tomography (CT) to Fossil-Bearing Rocks from the Site of Malapa, South Africa.
    (Public Library of Science, 2015-12-18) Smilg, J.S.; Berger, L.R.; Smilg, Jacqueline S.
    In the South African context, computed tomography (CT) has been used applied to individually prepared fossils and small rocks containing fossils, but has not been utilized on large breccia blocks as a means of discovering fossils, and particularly fossil hominins. Previous attempts at CT imaging of rocks from other South African sites for this purpose yielded disappointing results. For this study, 109 fossil- bearing rocks from the site of Malapa, South Africa were scanned with medical CT prior to manual preparation. The resultant images were assessed for accuracy of fossil identification and characterization against the standard of manual preparation. The accurate identification of fossils, including those of early hominins, that were not visible on the surface of individual blocks, is shown to be possible. The discovery of unexpected fossils is reduced, thus lowering the potential that fossils could be damaged through accidental encounter during routine preparation, or even entirely missed. This study should significantly change the way fossil discovery, recovery and preparation is done in the South African context and has potential for application in other palaeontological situations. Medical CT imaging is shown to be reliable, readily available, cost effective and accurate in finding fossils within matrix conglomerates. Improvements in CT equipment and in CT image quality are such that medical CT is now a viable imaging modality for this palaeontological application.
  • Thumbnail Image
    Item
    Earliest hominin cancer: 1.7-million-year- old osteosarcoma from Swartkrans Cave, South Africa
    (Academy of Science of South Africa (ASSAf), 2016-07) Odes, E.J.; Randolph-Quinney, P.S.; Steyn, M.; Thockmorton, Z.; Smilg, J.S.; Zipfel, B.; Augustine, T.N.; de Beer, F.; Hoffman, J.W.; Franklin, R.D.; Berger, L.R.
    The reported incidence of neoplasia in the extinct human lineage is rare, with only a few confirmed cases of Middle or Later Pleistocene dates reported. It has generally been assumed that premodern incidence of neoplastic disease of any kind is rare and limited to benign conditions, but new fossil evidence suggests otherwise. We here present the earliest identifiable case of malignant neoplastic disease from an early human ancestor dated to 1.8–1.6 million years old. The diagnosis has been made possible only by advances in 3D imaging methods as diagnostic aids. We present a case report based on re-analysis of a hominin metatarsal specimen (SK 7923) from the cave site of Swartkrans in the Cradle of Humankind, South Africa. The expression of malignant osteosarcoma in the Swartkrans specimen indicates that whilst the upsurge in malignancy incidence is correlated with modern lifestyles, there is no reason to suspect that primary bone tumours would have been any less frequent in ancient specimens. Such tumours are not related to lifestyle and often occur in younger individuals. As such, malignancy has a considerable antiquity in the fossil record, as evidenced by this specimen.
  • Thumbnail Image
    Item
    Osteogenic tumour in Australopithecus sediba: Earliest hominin evidence for neoplastic disease
    (Academy of Science of South Africa (ASSAf)., 2016-07) Randolph-Quinney, P.S.; Williams, S.A.; Steyn, M.; Meyer, M.R.; Smilg, J.S.; Churchill, S.E.; Odes, E.J.; Augustine, T.; Tafforeau, P.; Berger, L.R.
    We describe the earliest evidence for neoplastic disease in the hominin lineage. This is reported from the type specimen of the extinct hominin Australopithecus sediba from Malapa, South Africa, dated to 1.98 million years ago. The affected individual was male and developmentally equivalent to a human child of 12 to 13 years of age. A penetrating lytic lesion affected the sixth thoracic vertebra. The lesion was macroscopically evaluated and internally imaged through phase-contrast X-ray synchrotron microtomography. A comprehensive differential diagnosis was undertaken based on gross- and micro-morphology of the lesion, leading to a probable diagnosis of osteoid osteoma. These neoplasms are solitary, benign, osteoid and bone-forming tumours, formed from well-vascularised connective tissue within which there is active production of osteoid and woven bone. Tumours of any kind are rare in archaeological populations, and are all but unknown in the hominin record, highlighting the importance of this discovery. The presence of this disease at Malapa predates the earliest evidence of malignant neoplasia in the hominin fossil record by perhaps 200 000 years.
  • Thumbnail Image
    Item
    The stable isotope setting of Australopithecus sediba at Malapa, South Africa.
    (Academic of Science of South Africa (ASSAf), 2016-07) Holt, E.; Dirks, P.; PLaczek, C.; Berger, L.R.
    We report delta C-13 and delta O-18 results from carbonate-cemented cave sediments at Malapa in South Africa. The sediments were deposited during a short-period magnetic reversal at 1.977±0.003 Ma, immediately preceding deposition of Facies D sediments that contain the type fossils of Australopithecus sediba. Values of delta C-13 range between -5.65 and -2.09 with an average of -4.58±0.54% (Vienna Pee Dee Belemnite, VPDB) and values of delta O-18 range between -6.14 and -3.84 with an average of -4.93±0.44% (VPDB). Despite signs of diagenetic alteration from metastable aragonite to calcite, the Malapa isotope values are similar to those obtained in two previous studies in South Africa for the same relative time period. Broadly, the Malapa delta C-13 values provide constraints on the palaeovegetation at Malapa. Because of the complex nature of the carbonate cements and mixed mineralogy in the samples, our estimates of vegetation type (C4-dominant) must be regarded as preliminary only. However, the indication of a mainly C4 landscape is in contrast to the reported diet of A. sediba, and suggests a diverse environment involving both grassland and riparian woodland.
  • Thumbnail Image
    Item
    Developmental simulation of the adult cranial morphology of australopithecus sediba.
    (Academy of Science of South Africa (ASSAf), 2016-07) Carlson, K.B.; De Ruiter, D.J.; Dewitt, T.J.; Mcnuity, K.P.; Tafforeau, P.; Berger, L.R.; Carlson, K.J.
    The type specimen of Australopithecus sediba (MH1) is a late juvenile, prompting some commentators to suggest that had it lived to adulthood its morphology would have changed sufficiently so as to render hypotheses regarding its phylogenetic relations suspect. Considering the potentially critical position of this species with regard to the origins of the genus Homo, a deeper understanding of this change is especially vital. As an empirical response to this critique, a developmental simulation of the MH1 cranium was carried out using geometric morphometric techniques to extrapolate adult morphology using extant male and female chimpanzees, gorillas and humans by modelling remaining development. Multivariate comparisons of the simulated adult A. sediba crania with other early hominin taxa indicate that subsequent cranial development primarily reflects development of secondary sexual characteristics and would not likely be substantial enough to alter suggested morphological affinities of A. sediba. This study also illustrates the importance of separating developmental vectors by sex when estimating ontogenetic change. Results of the ontogenetic projections concur with those from mandible morphology, and jointly affirm the taxonomic validity of A. sediba.
  • Thumbnail Image
    Item
    An Acheulean handaxe from Gladysvale Cave site, Gauteng, South Africa.
    (Academy of Science of South Africa (ASSAf), 2006-03) Hall, G.; Pickering, R.; Lacruz, R.; Hancox, J.; Berger, L.R.; Schmid, P.
    WE DESCRIBE A SINGLE HANDAXE FROM fossiliferous breccias at Gladysvale Cave, South Africa. The artefact is the only known tool so far discovered during the controlled excavations conducted at this site over the last decade, and was recovered from decalcified sediments near the stratigraphic interface of two breccia units, making it difficult to assign it with confidence to either. The morphology of the handaxe indicates a middle-late Acheulean industry, and preliminary electron spin resonance and palaeomagnetic dating suggest an age of greater than 780 000 years.
  • Thumbnail Image
    Item
    A partial skull of Paranthropus robustus from Cooper's Cave, South Africa.
    (Academy of Science of South Africa (ASSAf), 2008-03) Berger, L.R.; Kuhn, B.F.; Steininger, C.
    A partial hominin skull (COB 101) was identified in the fossil collections of the Transvaal Museum, Pretoria, attributed to the Cooper's Cave site in South Africa. The find represents the most complete hominin specimen recovered from localities at this site to date. COB 101 comprises the supraorbital, zygomatic, infraorbital and nasoalveolar regions of the right side, and the right upper third premolar. The specimen has undergone post-depositional distortion that resulted in the flattening of the facial structures. Here we describe and compare COB 101 with other hominin material from Africa and find that this specimen shares numerous diagnostic features with Paranthropus robustus. The discovery of COB 101 augments the number of specimens attributed to this species from other South African sites and other Cooper's Cave localities.
  • Thumbnail Image
    Item
    3D techniques and fossil identification: An elephant shrew hemi-mandible from the Malapa site.
    (Academy of Science of South Africa (ASSAf), 2011-11-07) Val, A.; Carlson, K.J; Kibii, J.M.; Steininger, C.; Churms, C.; Kuhn, B.F.; Berger, L.R.
    Conventional methods for extracting fossilised bones from calcified clastic sediments, using air drills or chemical preparations, can damage specimens to the point of rendering them unidentifiable. As an alternative, we tested an in silico approach that extended preparation and identification possibilities beyond those realisable using physical methods, ultimately proving to be crucial in identifying a fragile fossil. Image data from a matrix-encased hemi-mandible of a micromammal that was collected from the Plio-Pleistocene site of Malapa, Cradle of Humankind, South Africa, were acquired using microtomography. From the resultant images, a 3D rendering of the fossil was digitally segmented. Diagnostic morphologies were evaluated on the rendering for comparison with extant comparative specimens, positively identifying the specimen as an elephant shrew (Elephantulus sp.). This specimen is the first positively identified micromammal in the Malapa faunal assemblage. Cutting-edge in silico preparation technology provides a novel tool for identifying fossils without endangering bone integrity, as is commonly risked with physical preparation.
  • Thumbnail Image
    Item
    A hominin first rib discovered at the Sterkfontein Caves, South Africa.
    (Academy of Science of South Africa (ASSAf), 2016-05) Tawane, G.; Garcia-Martinez, D.; Eyre, J.; Bastir, M.; Berger, L.R.; Schmid, P.; Nalla, S.; Williams, S.A.
    First ribs - the first or most superior ribs in the thorax - are rare in the hominin fossil record, and when found, have the potential to provide information regarding the upper thorax shape of extinct hominins. Here, we describe a partial first rib from Member 4 of the Sterkfontein Caves, South Africa. The rib shaft is broken away, so only the head and neck are preserved. The rib is small, falling closest to small-bodied Australopithecus first ribs (AL 288-1 and MH1). Given that it was recovered near the StW 318 femur excavation, which also represents a small individual, we suggest that the two may be associated. Three-dimensional geometric morphometric analyses were used to quantify the rib fragment morphology and compare it to extant hominoid and other fossil hominin ribs. While only the proximal end is preserved, our analyses show that South African Australopithecus share derived features of the proximal first rib more closely resembling A. afarensis and later hominins than great apes.
  • Thumbnail Image
    Item
    Further evidence for eagle predation of, and feeding damage on, the Taung child.
    (ASSAf, 2007-11) Berger, L.R.; McGraw, W.S.
    We present new evidence supporting the hypothesis that a large raptor was responsible for the death of the c. 2.0-Myr-old Taung child, holotype of the early hominin species Australopithecus africanus. We compare the Taung child's skull with those of monkeys killed and eaten by modern crowned eagles, Stephanoaetus coronatus, in the Ivory Coast's Tai Forest. Close inspection of primate feeding remains from these large, powerful raptors reveals scratch marks in the orbital, frontal, temporal, parietal and occipital regions. Scratches similar in size and distribution are also present on the Taung child's skull. The new taphonomic evidence, combined with previously recognized similarities in breakage patterns and other assemblage characteristics, bolsters the case that a large bird of prey was responsible for the death of the juvenile hominin from Taung.