Research Outputs

Permanent URI for this communityhttps://hdl.handle.net/10539/37787

For queries relating to content and technical issues, please contact IR specialists via this email address : openscholarship.library@wits.ac.za, Tel: 011 717 4652 or 011 717 1954

Browse

Search Results

Now showing 1 - 10 of 44
  • Thumbnail Image
    Item
    The valorisation of platinum group metals from flotation tailings: A review of challenges and opportunities
    (Elsevier, 2023-06) Gibson, Borbor A.K.K.; Nwaila, Glen; Manzi, Musa; Ndlovu, Sehliselo; Ghorbani, Yousef; Petersen, Jochen
    Flotation tailings from South Africa’s platinum group minerals (PGM) represent complex polymetallic orebodies comprising a low-grade platinum group elements (PGE) content and complex mineralogical composition. Nevertheless, given the valuable mineral potential in the tailings, it is understandable that the substantial historic tailings deposits and sizeable annual production volume from primary processes represent a potential secondary resource. For several decades, valorising the PGM tailing materials received very little interest due to limitations associated with extractive metallurgical technology to achieve economically viable PGE extraction. The early 21st century saw the coming online of technologies, including but not limited to ultrafine grinding, suitable to meet challenges in primary metallurgical treatment processes to recover valuable minerals from ultrafine particle fractions, which could not otherwise be recovered. More so, such processes were critical in improving the liberation of partially liberated particles without compromising additional ultrafine generation. These technologies led to the development of re-treatment pilot tests and subsequent industrial re-treatment recovery processes. The current industrial re-treatment approach – via tertiary scavenging flotation circuits – renders profit in small increments up to 1 ~ 2% additional recovery relative to the primary plant head grade. These small increments relate to about ~12–30% PGE recovery of the feed grade to the re-treatment circuit, thereby enhancing the primary plant’s overall economics as well as aiding the supply of critical metals to meet global demands. With a focus on South Africa, this review provides an overview of (a) the current and future drivers of the precious metals global demand; (b) proffers discussion on the PGM characteristic mineralogy and the metallurgical value chain; (c) relates the parent orebodies (“reefs”) mineral characteristics to the inherent processed tailings; (d) estimates the economic potential these massive processed waste materials contain, (e) provides an overview of existing technologies that are industrially used in tailing re-treatment plants; and (f) outlines a comprehensive understanding of the nature of value minerals rejection to tailings.
  • Thumbnail Image
    Item
    Performance of the Biomark HD real-time qPCR System (Fluidigm) for the detection of nasopharyngeal bacterial pathogens and Streptococcus pneumoniae typing
    (Nature Research, 2019-04) Olwagen, Courtney P.; Adrian, Peter V.; Madhi, Shabir A.
    Traditional qPCR assays for pneumococcal detection and serotype characterization require large sample volume, is expensive and labor intensive. We aimed to develop a quantitative nanofuidic Fluidigm assay to overcome some of these shortcomings. A quantitative Fluidigm assay was established to detect 11 bacterial pathogens, 55 pneumococcal serotypes and 6 serotypes of H. infuenzae. The Fluidigm assay results were compared to conventional qPCR and culture. All reactions in the Fluidigm assay efectively amplifed their respective targets with high sensitivity and specifcity compared to qPCR. There was excellent concordance between qPCR and Fluidigm for detection of carriage prevalence (kappa>0.75) and density (Rho>0.95). Fluidigm identifed an additional 7 (4.2%) serotypes over those detected by qPCR. There was a modest concordance between culture and Fluidigm for the majority of reactions detecting S. pneumoniae serotypes/serogroups (kappa>0.6), with Fluidigm identifying an additional 113 (39.1%) serotypes. Discordant results between the three methods were associated with a low carriage density. The Fluidigm assay was able to detect common pneumococcal serotypes, H. infuenzae serotypes, and other common nasopharyngeal bacterial organisms simultaneously. Deployment of this assay in epidemiological studies could provide better insight into the efect of PCV immunization on the nasopharyngeal microbiota in the community
  • Thumbnail Image
    Item
    Generalized hot attractors
    (Springer, 2019-03) Goldstein, Kevin; Jejjala, Vishnu; Mashiyane, James Junior; Nampuri Suresh
    Non-extremal black holes are endowed with geometric invariants related to their horizon areas. We extend earlier work on hot attractor black holes to higher dimensions and add a scalar potential. In addition to the event and Cauchy horizons, when we complexify the radial coordinate, non-extremal black holes will generically have other horizons as well. We prove that the product of all of the horizon areas is independent of variations of the asymptotic moduli further generalizing the attractor mechanism for extremal black holes. In the presence of a scalar potential, as typically appears in gauged supergravity, we find that the product of horizon areas is not necessarily the geometric mean of the extremal area, however. We outline the derivation of horizon invariants for stationary backgrounds.
  • Thumbnail Image
    Item
    Characterization of putative DD-carboxypeptidase-encoding genes in Mycobacterium smegmatis
    (Nature Research, 2019-03) Ealand, Christopher S.; Asmal, Rukaya; Mashigo, Lethabo; Campbell, Lisa; Kana, Bavesh D.
    Penicillin binding proteins (PBPs) are the target of numerous antimicrobial agents that disrupt bacterial cell wall synthesis. In mycobacteria, cell elongation occurs through insertion of nascent cell wall material in the sub-polar region, a process largely driven by High Molecular Weight PBPs. In contrast, the function of DD-carboxypeptidases (DD-CPases), which are Low Molecular Weight Class 1C PBPs, in mycobacteria remains poorly understood. Mycobacterium smegmatis encodes four putative DD-CPase homologues, which display homology to counterparts in Escherichia coli. Herein, we demonstrate that these are expressed in varying abundance during growth. Deletion of MSMEG_1661, MSMEG_2433 or MSMEG_2432, individually resulted in no defects in growth, cell morphology, drug susceptibility or spatial incorporation of new peptidoglycan. In contrast, deletion of MSMEG_6113 (dacB) was only possible in a merodiploid strain expressing the homologous M. tuberculosis operon encoding Rv3627c (dacB), Rv3626c, Rv3625c (mesJ) and Rv3624c (hpt), suggestive of essentiality. To investigate the role of this operon in mycobacterial growth, we depleted gene expression using anhydrotetracyclineresponsive repressors and noted reduced bipolar peptidoglycan synthesis. These data point to a possible role for this four gene operon, which is highly conserved across all mycobacterial species, in regulating spatial localization of peptidoglycan synthesis.
  • Thumbnail Image
    Item
    A tunable Josephson platform to explore many-body quantum optics in circuit-QED
    (Nature Research, 2019-02) Snyman, Izak; Martínez, Javier Puertas; Léger, Sébastien; Gheeraert, Nicolas; Dassonneville, Rémy; Planat, Luca; Foroughi, Farshad; Krupko, Yuriy; Buisson, Olivier; Naud, Cécile; Hasch-Guichard, Wiebke; Florens, Serge; Roch, Nicolas
    The interaction between light and matter remains a central topic in modern physics despite decades of intensive research. Coupling an isolated emitter to a single mode of the electromagnetic field is now routinely achieved in the laboratory, and standard quantum optics provides a complete toolbox for describing such a setup. Current efforts aim to go further and explore the coherent dynamics of systems containing an emitter coupled to several electromagnetic degrees of freedom. Recently, ultrastrong coupling to a transmission line has been achieved where the emitter resonance broadens to a significant fraction of its frequency, and hybridizes with a continuum of electromagnetic (EM) modes. In this work we gain significantly improved control over this regime. We do so by combining the simplicity and robustness of a transmon qubit and a bespoke EM environment with a high density of discrete modes, hosted inside a superconducting metamaterial. This produces a unique device in which the hybridisation between the qubit and many modes (up to ten in the current device) of its environment can be monitored directly. Moreover the frequency and broadening of the qubit resonance can be tuned independently of each other in situ. We experimentally demonstrate that our device combines this tunability with ultrastrong coupling and a qubit nonlinearity comparable to the other relevant energy scales in the system. We also develop a quantitative theoretical description that does not contain any phenomenological parameters and that accurately takes into account vacuum fluctuations of our large scale quantum circuit in the regime of ultrastrong coupling and intermediate non-linearity. The demonstration of this new platform combined with a quantitative modelling brings closer the prospect of experimentally studying many-body effects in quantum optics. A limitation of the current device is the intermediate nonlinearity of the qubit. Pushing it further will induce fully developed many-body effects, such as a giant Lamb shift or nonclassical states of multimode optical fields. Observing such effects would establish interesting links between quantum optics and the physics of quantum impurities
  • Thumbnail Image
    Item
    Spin-3/2 dark matter in a simple t-channel model
    (Springer Open, 2018-11) Khojali, Mohammed Omer; Kumar, Mukesh; Cornell, Alan S.; Goyal, Ashok
    We consider a spin-3/2 fermionic dark matter (DM) particle interacting with the Standard Model quarks through the exchange of a charged and coloured scalar or vector mediator in a simple t-channel model. It is found that for the vector mediator case, almost the entire parameter space allowed by the observed relic density is already ruled out by the direct detection LUX data. No such bounds exist on the interaction mediated by scalar particles. Monojet + missing energy searches at the Large Hadron Collider provide the most stringent bounds on the parameters of the model for this case. The collider bounds put a lower limit on the allowed DM masses.
  • Thumbnail Image
    Item
    Dimethylformamide is a novel nitrilase inducer in Rhodococcus rhodochrous
    (Springer, 2018-09) Chhiba-Govindjee, V. P.; Brady, D.; Mathiba, K.; van der Westhuyzen, C. W.; Steenkamp, P.; Rashamuse, J. K.; Stoychev, S.
    Nitrilases are of commercial interest in the selective synthesis of carboxylic acids from nitriles. Nitrilase induction was achieved here in three bacterial strains through the incorporation of a previously unrecognised and inexpensive nitrilase inducer, dimethylformamide (DMF), during cultivation of two Rhodococcus rhodochrous strains (ATCC BAA-870 and PPPPB BD1780), as well as a closely related organism (Pimelobacter simplex PPPPB BD-1781). Benzonitrile, a known nitrilase inducer, was ineffective in these strains. Biocatalytic product profiling, enzyme inhibition studies and protein sequencing were performed to distinguish the nitrilase activity from that of sequential nitrile hydratase-amidase activity. The expressed enzyme, a 40-kDa protein with high sequence similarity to nitrilase protein Uniprot Q-03217, hydrolyzed 3-cyanopyridine to produce nicotinic acid exclusively in strains BD-1780 and BD-1781. These strains were capable of synthesising both the vitamin nicotinic acid as well as β-amino acids, a compound class of pharmaceutical interest. The induced nitrilase demonstrated high enantioselectivity (>99%) in the hydrolysis of 3-amino-3-phenylpropanenitrile to the corresponding carboxylic acid.
  • Thumbnail Image
    Item
    Free field primaries in general dimensions: counting and construction with rings and modules
    (Springer, 2018-08) de Mello Koch, Robert
    We define lowest weight polynomials (LWPs), motivated by so(d, 2) representation theory, as elements of the polynomial ring over d × n variables obeying a system of first and second order partial differential equations. LWPs invariant under Sn correspond to primary fields in free scalar field theory in d dimensions, constructed from n fields. The LWPs are in one-to-one correspondence with a quotient of the polynomial ring in d × (n − 1) variables by an ideal generated by n quadratic polynomials. The implications of this description for the counting and construction of primary fields are described: an interesting binomial identity underlies one of the construction algorithms. The product on the ring of LWPs can be described as a commutative star product. The quadratic algebra of lowest weight polynomials has a dual quadratic algebra which is non-commutative. We discuss the possible physical implications of this dual algebra.
  • Thumbnail Image
    Item
    Maximizing access and minimizing barriers to research in low- and middle-income countries: open access and health equity
    (Springer, 2023-11) Saloojee, Haroon; Pettifor, John M.
    Access to published research has always been difcult for researchers and clinicians in low- and middle-income countries,because of the cost of and lack of access to the relevant publications. The dramatic recent increase in electronic research publications has resulted in a marked improvement in reader access to these publications through their mainly Open Access policies, however the costs of processing of submissions and publication have now become the burden of the researchers wishing to publish, rather than the readers. For many researchers working in LMIC, the Article Processing Charges (APC) are prohibitive, hampering the publication of research being conducted in and relevant to these countries. A number of grant funding agencies and international not-for-proft organizations are trying to address these issues by including funding for article publications in their grants, or by supporting publishing entities by subsiding the cost of publication, but more needs to be done by major journal publishers through markedly reducing the APC being charged to researchers in LMIC for open access facilities.
  • Thumbnail Image
    Item
    Kondo effect and enhanced magnetic properties in gadolinium functionalized carbon nanotube supramolecular complex
    (Nature Research, 2018-05) Ncube, S.; Coleman, C.; Strydom, A.; Flahaut, E.; de Sousa, A.
    We report on the enhancement of magnetic properties of multiwalled carbon nanotubes (MWNTs) functionalized with a gadolinium based supramolecular complex. By employing a newly developed synthesis technique, we find that the functionalization method of the nanocomposite enhances the strength of magnetic interaction, leading to a large effective moment of 15.79µB and nonsuperparamagnetic behavior, unlike what has been previously reported. Saturating resistance at low temperatures is ftted with the numerical renormalization group formula, verifying the Kondo effect for magnetic impurities on a metallic electron system. Magnetoresistance shows devices fabricated from aligned gadolinium functionalized MWNTs (Gd-Fctn-MWNTs) exhibit spin-valve switching behaviour of up to 8%. This study highlights the possibility of enhancing magnetic interactions in carbon systems through chemical modification, moreover, we demonstrate the rich physics that might be useful for developing spin based quantum computing elements based on one-dimensional (1D) channels.