3. Electronic Theses and Dissertations (ETDs) - All submissions

Permanent URI for this communityhttps://wiredspace.wits.ac.za/handle/10539/45

Browse

Search Results

Now showing 1 - 2 of 2
  • Item
    DNA metabolism in mycobacteria
    (2006-03-23) Warner, Digby Francis
    Specialised mechanisms have evolved in pathogenic bacteria to enable adaptation to hostile and fluctuating host environments. Inducible mutagenesis, in particular, has been implicated in the emergence of antibiotic- and stress-resistant mutants. This thesis examined mycobacterial DNA metabolism with specific emphasis on the roles of multiple Y-family polymerases in the evolution of inter-strain variation and drug resistance in M. tuberculosis. The contribution of the nrdZ-encoded class II ribonucleotide reductase (RNR) to the maintenance of dNTP pools for replication and repair under hypoxic conditions was also explored. In addition, the co-factor requirement of NrdZ prompted an investigation into the biosynthesis and transport of adenosylcobalamin (AdoCbl) in M. tuberculosis. The data suggest that the mycobacterial Y-polymerases are tightly regulated and restricted to specialised damage-free repair or replication restart. Disruptions in individual M. smegmatis mc2155 DinB (pol IV) homologues resulted in novel antibiotic-resistance polymorphisms that were suggestive of non-redundant function. In contrast, abrogation of all error-prone polymerase activity failed to impair long-term competitive survival of mc2155 in vitro. Similarly, heterologous overexpression of M. tuberculosis pol IV homologues did not increase spontaneous mutation rates in wild-type mc2155, or complement damage hypersensitivity. However, treatment of M. smegmatis with gyrase inhibitors confirmed the differential induction of pol IV homologues in response to replication stalling and demonstrated elevated rates of spontaneous mutagenesis as a result of GyrB inhibition. The class II RNR does not appear to play a significant role in mycobacterial pathogenesis. Specifically, NrdZ was unable to substitute for the class I RNR under aerobic conditions in vitro, and a M. tuberculosis ÄnrdZ deletion mutant was not impaired in its ability to adapt to hypoxia in vitro. Similarly, infection of immunocompetent mice suggested that nrdZ is not required for the survival or virulence of M. tuberculosis in vivo. Disruptions in genes required for AdoCbl and methionine biosynthesis revealed that complex regulatory functions govern mycobacterial methionine and AdoCbl homeostasis. Loss of early (cobK) or late (cobU) stage AdoCbl biosynthetic enzymes had no effect on the growth of M. tuberculosis H37Rv in vitro. In contrast, deletion of the B12-independent methionine synthase (metE) resulted in impaired growth on solid media that could be rescued by vitamin B12 but not Lmethionine supplementation, simultaneously demonstrating the ability of M. tuberculosis to transport exogenous vitamin B12. Significantly, double ÄcobU/ÄmetE and ÄcobK/ÄmetE deletion mutants in which all predicted methionine synthase activity was eliminated, were not impaired for growth in liquid minimal media, suggesting that M. tuberculosis H37Rv possesses alternative mechanisms for methionine generation. Finally, the attenuated virulence of the ÄcobU and ÄmetE deletion mutants in vivo in immunocompetent mice indicated the relevance of AdoCbl biosynthesis to mycobacterial pathogenesis.
  • Item
    Mutation rates in mycobacterial hosts with altered Dna metabolic activity
    (2006-02-08) Barichievy, Samantha
    The completion of the genome sequence of Mycobacterium tuberculosis strain H37Rv revealed that 10% of the coding capacity is devoted to two, large multigene families that are characterised by repeat sequences. These are the PE and PPE families that code for acidic, glycine rich proteins. A subgroup of the PE family is the polymorphic GC rich sequence (PGRS) gene subfamily. Genome comparisons of clinical isolates of M. tuberculosis have confirmed the polymorphic character of some of these genes suggesting they may be analogous to the contingency loci found in other pathogenic bacteria. Certain PE-PGRS proteins play a direct role in virulence in M. marinum, other PE-PGRS genes are cell surface associated, and some PE-PGRS proteins are variable surface antigens, supporting a potential role in host pathogen interactions. A reporter assay designed to investigate mutations in a PE-PGRS repeat-containing sequence was used to assess mutation rates in various M. smegmatis host strains by fluctuation analysis. A wide spectrum of mutations was observed and the evidence suggests that slipped-strand mispairing between proximal and distal PGRS sequences located in cis is the predominant type of mutational event at such loci. Moreover, slipped-strand mispairing at such loci occurs at a moderately higher rate than base substitution mutagenesis and is mediated by the normal replicative polymerase.
Copyright Ownership Is Guided By The University's

Intellectual Property policy

Students submitting a Thesis or Dissertation must be aware of current copyright issues. Both for the protection of your original work as well as the protection of another's copyrighted work, you should follow all current copyright law.