3. Electronic Theses and Dissertations (ETDs) - All submissions

Permanent URI for this communityhttps://wiredspace.wits.ac.za/handle/10539/45

Browse

Search Results

Now showing 1 - 2 of 2
  • Item
    Electrochemical corrosion measurement of solid state sintered silicon carbide (SSiC) and liquid phase sintered silicon carbide (LPSSiC) ceramic materials
    (2006-11-15T07:25:47Z) Andrews, Anthony
    Silicon carbide ceramics have many attractive properties, one of which is their high degree of corrosion resistance. Even though corrosion is slow, it does occur. Standard procedures for corrosion testing such as the immersion method is limited due to the low corrosion rates of most of these materials: it does not elucidate the mechanism of corrosion, but only gives the rate and degree of dissolution. Electrochemical techniques offer the possibility to further elucidate corrosion mechanisms and establish the resistance stability of conducting or partially-conducting ceramic materials, thus enhancing the understanding of ceramic material behaviour. In conjuction with microstructural changes, the electrochemical corrosion behaviour of solid state sintered silicon carbide (SSiC) and liquid phase sintered silicon carbide (LPSSiC) have successfully been studied at room temperature in acidic and alkaline environments by using potentiodynamic polarisation measurements. Several hypotheses were proposed to assist in establishing the effect of silicon and carbon on the corrosion mechanisms of these materials. The effect of the secondary phase on the electrochemical corrosion of the LPSSiC was also investigated. Corrosion current densities of the LPSSiC materials were much lower than the SSiC materials in all test solutions. The SSiC materials showed pseudo-passive behaviour in HCl and HNO3, due to the formation of thin layer of SiO2 on the surface. The carbon in the SiC compound increased the corrosion current densities in all test solutions for SSiC materials. The electrochemical corrosion of LPSSiC is due to the dissolution of SSiC and not the oxides; the chemcial attack on the oxide phases is mainly by acid-base type of reactions, rather than electrochemical corrosion involving redox reactions.
  • Item
    CORROSION TESTING TECHNIQUES AUTOMOTIVE EXHAUST SYSTEMS: EVALUATION, INTEGRATION AND DEVELOPMENT
    (2006-11-14T11:06:50Z) Nkosi, Zakhele Wonderboy
    When specifying materials for use in exhaust systems, it is imperative that they exhibit sufficient corrosion resistance for the specific conditionsto which exhaust components are exposed, since up to 80% of all failures is attributed to corrosion and oxidation. It is therefore neccesary to establish the corrosion behaviour of the materials in conditions and environments to which the exhausts would typically come into contact with. Most car manufacturers, exhaust manufacturers and material providers have specific corrosion testing methods which they use to determine the corrosion resistance of candidate materials, but there appears to be no standard procedure. A summary comparing all the existing systems is given in section 2.7. The corrosion testing methods utilise a wide range of conditions, testing temperatures and stages. However, careful investigation of the tests show some similarities, and it was possible to identify eleven key tests, that cover internal corrosion, external corrosion and oxidation for both diesel and petrol engines. Eight of these tests were used to rank the corrosion and oxidation resistance of selected stainless steels, namely AISI type 304, 321, 409, 434 and DIN 1.4509. It appears that the austenitic stainless steels perform better in the cold end conditions, while the ferritic types are more resistant in the hot end high temperature conditions. Of all the eight test performed, only the electrochemical tests for external corrosion of cold end components did not give reproducible results. The rest of the tests could be used to screen materials for exhaust system applications. In the internal condition of the cold end, the results of the elctrochemical tests indicated that they can be used as a possible replacement for the long exposure tests. The key tests also highlighted the the presence of NH4+ ions in an exhaust gas is benificial to the corrosion resistance od stainless steels in internal cold end application. Its inhibiting effect was more pronounced for the ferritic stainless steels. The project indicated that external corrosion due to salt environments is not the major cause of the failure of cold end components, but rather that internal corrosion due to the condensate is the most detrimental.
Copyright Ownership Is Guided By The University's

Intellectual Property policy

Students submitting a Thesis or Dissertation must be aware of current copyright issues. Both for the protection of your original work as well as the protection of another's copyrighted work, you should follow all current copyright law.