3. Electronic Theses and Dissertations (ETDs) - All submissions
Permanent URI for this communityhttps://wiredspace.wits.ac.za/handle/10539/45
Browse
3 results
Search Results
Item Study of diamond/mullite composites by sol/gel and hot press sintering methods(2011-04-15) Govo, Simbarashe PinielA study has been conducted into the synthesis of 10wt% diamond/ mullite composites through two methods: First through the hot press sintering of alumina and silica in stoichiometric composition for 3:2 mullites (mullite formed in situ) at 1400, 1450 and 1500oC. Second through the sol/ gel process. The sol/ gel method only provided the basis for future development with no further discussion of the results while the hot press sintering method yielded composites with residual cristobalite and corundum phases. Achieved densities of the composites were 93.7, 94.6 and 95.8% of the theoretical density with respect to sintering temperatures of 1400, 1450 and 1500oC for compact samples by the first method. Hardness – measured by Vickers indentation – of the composites decreased with increase in temperature with 15.5 ± 0.33GPa achieved at the lowest sintering temperature investigated. The decrease in hardness was attributed to the structural degradation of diamond to non-diamond carbon forms with increase in temperature as observed from Raman spectra of each of the composites. X-ray traces showed an increase in the mullite content with increase in temperature. The fracture toughness of compacts initially hot press sintered from alumina and silica in stoichiometric composition for 3:2 mullite with no diamond added decreased with increase in sintering temperature with 4.75 ± 0.10MPa·m1/2 achieved at the lowest sintering temperature investigated. Further discussion to the structure and physical properties is presented.Item The synthesis of nitrogen doped carbon spheres and polythiophene/carbon sphere composites(2010-03-17T07:19:02Z) Kunjuzwa, NikiweThis study reports on the synthesis of N-doped carbon spheres (N-CSs) by a simple synthetic procedure. A horizontal CVD type reactor was used to synthesize N-CSs from pyridine. Depending on the dilution of the pyridine with toluene, a nitrogen content of 0.13-5 mol % was obtained. The use of a vertical CVD reactor gave N-CSs with a N-content of 0.19-3 mol % when an ammonium solution and acetylene were used as reactants. The diameters of carbon spheres were found to be in the range of 40 nm to 1000 nm for both CVD reactors. The diameter can be controlled by varying the flow rate, temperature, time, concentration and the reactor type. The samples were characterized by TEM, HRTEM, elemental analysis, Raman spectroscopy, TGA, PXRD and ESR. We have demonstrated that unsubstituted thiophene can be polymerized by Fe3+-catalyzed oxidative polymerization. The average particle size was about 50 nm, within a narrow particlesize distribution. The undoped carbon spheres (CSs) were reacted with thiophene to give polymer/carbon composites containing polythiophene and carbon nanospheres via chemical oxidative polymerization reaction. Polythiophene molecules were either chemically bonded or physically adsorbed to the surface of carbon spheres. The microstructure and properties of the two types of composites were compared. The thermogravimetric analysis data confirmed that the presence of CSs in the polymer\carbon composites is responsible for the higher thermal stability of the composite material in comparison with pristine polythiophene. The FTIR analysis showed that covalent functionalized nanocomposites exhibit a high intensity of a C-S bond This study reports on the synthesis of N-doped carbon spheres (N-CSs) by a simple synthetic procedure. A horizontal CVD type reactor was used to synthesize N-CSs from pyridine. Depending on the dilution of the pyridine with toluene, a nitrogen content of 0.13-5 mol % was obtained. The use of a vertical CVD reactor gave N-CSs with a N-content of 0.19-3 mol % when an ammonium solution and acetylene were used as reactants. The diameters of carbon spheres were found to be in the range of 40 nm to 1000 nm for both CVD reactors. The diameter can be controlled by varying the flow rate, temperature, time, concentration and the reactor type. The samples were characterized by TEM, HRTEM, elemental analysis, Raman spectroscopy, TGA, PXRD and ESR. We have demonstrated that unsubstituted thiophene can be polymerized by Fe3+-catalyzed oxidative polymerization. The average particle size was about 50 nm, within a narrow particlesize distribution. The undoped carbon spheres (CSs) were reacted with thiophene to give polymer/carbon composites containing polythiophene and carbon nanospheres via chemical oxidative polymerization reaction. Polythiophene molecules were either chemically bonded or physically adsorbed to the surface of carbon spheres. The microstructure and properties of the two types of composites were compared. The thermogravimetric analysis data confirmed that the presence of CSs in the polymer\carbon composites is responsible for the higher thermal stability of the composite material in comparison with pristine polythiophene. The FTIR analysis showed that covalent functionalized nanocomposites exhibit a high intensity of a C-S bondThis study reports on the synthesis of N-doped carbon spheres (N-CSs) by a simple synthetic procedure. A horizontal CVD type reactor was used to synthesize N-CSs from pyridine. Depending on the dilution of the pyridine with toluene, a nitrogen content of 0.13-5 mol % was obtained. The use of a vertical CVD reactor gave N-CSs with a N-content of 0.19-3 mol % when an ammonium solution and acetylene were used as reactants. The diameters of carbon spheres were found to be in the range of 40 nm to 1000 nm for both CVD reactors. The diameter can be controlled by varying the flow rate, temperature, time, concentration and the reactor type. The samples were characterized by TEM, HRTEM, elemental analysis, Raman spectroscopy, TGA, PXRD and ESR. We have demonstrated that unsubstituted thiophene can be polymerized by Fe3+-catalyzed oxidative polymerization. The average particle size was about 50 nm, within a narrow particlesize distribution. The undoped carbon spheres (CSs) were reacted with thiophene to give polymer/carbon composites containing polythiophene and carbon nanospheres via chemical oxidative polymerization reaction. Polythiophene molecules were either chemically bonded or physically adsorbed to the surface of carbon spheres. The microstructure and properties of the two types of composites were compared. The thermogravimetric analysis data confirmed that the presence of CSs in the polymer\carbon composites is responsible for the higher thermal stability of the composite material in comparison with pristine polythiophene. The FTIR analysis showed that covalent functionalized nanocomposites exhibit a high intensity of a C-S bond at 695 cm-1 , which is not observed in the noncovalent functionalized nanocompositesItem Electrical conductivity and permittivity of ceramics and other composites(2006-11-16T06:17:26Z) Sauti, GodfreyDetermining the properties of composites and how these relate to those of the components and the microstructure is extremely useful as it enables the understanding of existing materials and the design of new materials with a variety of applications. However, the link between the ac conductivity data and the microstructure and composition of the composite is not a simple one. Simulations of binary composites are presented which show that from relatively simple component properties arise complex composite properties. Accurate identi¯cation of the components of composites, using characteristic frequencies, is demonstrated for simulated and actual experimental data. The Maxwell-Wagner and Brick Layer Models, which are often applied beyond the range of their original derivation, are found to consistently ¯t the data of yttria-stabilized zirconia ceramics measured at various tempera- tures. The results from ¯tting single crystal and polycrystalline sample data indicate that accurate modeling of the properties of the polycrystalline sam- ples requires more theoretical work on the conduction mechanisms in single crystals and the grains of the ceramics. Data from a polyester-resin/silicon system is found to be best ¯tted us- ing the Single Exponent Phenomenological Percolation Equation (SEPPE) with experimentally measured component properties as input. The percola- tion threshold obtained suggests a system where the insulator tends coat the conductor. The results show that, with the actual component properties as input, the SEPPE can be used to qualitatively and semi-quantitatively model and ¯t composite ac conductivity data. Analysis of the ac conductivity of liquid-phase-sintered silicon carbide ce- ramics showed that for this system, the features often observed in the imped- ance spectra are all due to a multi-component grain bondary/binder phase and not the SiC grains. This multi-component grain boundary phase can be ¯tted accurately to the Brick Layer Model, indicating a microstructure where an insulating component coats a more conducting component.