3. Electronic Theses and Dissertations (ETDs) - All submissions

Permanent URI for this communityhttps://wiredspace.wits.ac.za/handle/10539/45

Browse

Search Results

Now showing 1 - 3 of 3
  • Item
    Water management at a base metals refinery
    (2016) Osman, Ayesha
    Most mineral processing plants have high water requirements for their operational activities. These plants often function in an environment where water is becoming increasingly scarce. An increase in population will result in an increased demand for water, potentially beyond the limits of supply, and hence increased competition for the resource. In South Africa, Gauteng and the North West Province are likely to be first to experience a shortage of potable water. The key to a sustainable future lies in understanding and utilising resources more efficiently. This holds especially for industries who seek to minimise water usage through better management of resources. The two tools used in this study are the Water Accounting Framework (WAF) and Water Footprinting (WF) method. This research assisted a refinery in the North West Province understand its water usage and move towards operating in a more sustainable manner. Site water management was improved and the objective of this research fulfilled by: (i) Surveying the potable water and the storm water systems with a view to assessing the current water accountability and determining methods to improve accountability; (ii) Determining the water balance for the site and presenting it in the form of a water balance sheet; (iii) Reporting water usage in accordance with the Minerals Council of Australia’s “Water Accounting Framework for the Minerals Industry”; (iv) Calculating the water footprints of the refinery; and (v) Evaluating the water usage at the refinery and identifying ways in which water savings could be achieved. It was seen that the biggest consumer of water was the boilers and utilities section and the biggest loss of water was through evaporation. The refinery potable water requirement (2 280 m3/y) amounted to 0.16% of the daily water use for the Bojanala Platinum District. Four reports (outputs) were generated using the WAF. The four reports generated provide a good indication of the movement of water into, out of and during a process. WFs were calculated for the process. The blue WF was calculated to be 832 363 m3 and the green WF was calculated to be 261 970 m3. The product WF was 43.9 m3/t of base metal produced. There was no grey WF as the site does not discharge polluted water. This research provided an opportunity for the refinery to improve water efficiency onsite as well as improve reporting standards. Water usage was reported using global reporting tools to set a benchmark for the base metals industry.
  • Item
    Simultaneous minimisation of water and energy within a water and membrane network superstructure
    (2016) Buabeng-Baidoo, Esther
    The scarcity of water and strict environmental regulations have made sustainable engineering a prime concern in the process and manufacturing industries. Water minimisation involves the reduction of freshwater use and effluent discharge in chemical plants. This is achieved through water reuse, water recycle and water regeneration. Optimisation of the water network (WN) superstructure considers all possible interconnections between water sources, water sinks and regenerator units (membrane systems). In most published works, membrane systems have been represented using the “black-box” approach, which uses a simplified linear model to represent the membrane systems. This approach does not give an accurate representation of the energy consumption and associated costs of the membrane systems. The work presented in this dissertation therefore looks at the incorporation of a detailed reverse osmosis network (RON) superstructure within a water network superstructure in order to simultaneously minimise water, energy, operating and capital costs. The WN consists of water sources, water sinks and reverse osmosis (RO) units for the partial treatment of the contaminated water. An overall mixed-integer nonlinear programming (MINLP) framework is developed, that simultaneously evaluates both water recycle/reuse and regeneration reuse/recycle opportunities. The solution obtained from optimisation provides the optimal connections between various units in the network arrangement, size and number of RO units, booster pumps as well as energy recovery turbines. The work looks at four cases in order to highlight the importance of including a detailed regeneration network within the water network instead of the traditional “black-box’’ model. The importance of using a variable removal ratio in the model is also highlighted by applying the work to a literature case study, which leads to a 28% reduction in freshwater consumption and 80% reduction in wastewater generation.
  • Item
    Superstructure optimisation of a water minimisation network with a embedded multicontaminant electrodialysis model
    (2016) Nezungai, Chiedza Demetria Maputsa
    The water-energy nexus considers the relationship between water and energy resources. Increases in environmental degradation and social pressures in recent years have necessitated the development of manufacturing processes that are conservative with respect to both these resources, while maintaining financial viability. This can be achieved by process integration (PI); a holistic approach to design which emphasises the unity of processes. Within the realm of PI, water network synthesis (WNS) explores avenues for reuse, recycle and regeneration of effluent in order to minimise freshwater consumption and wastewater production. When regeneration is required, membrane-based treatment processes may be employed. These processes are energy intensive and result in a trade-off between water and energy minimisation, thus creating an avenue for optimisation. Previous work in WNS employed a black box approach to represent regenerators in water minimisation problems. However, this misrepresents the cost of regeneration and underestimates the energy requirements of a system. The aim of the research presented in this dissertation is to develop an integrated water regeneration network synthesis model to simultaneously minimise water and energy in a water network. A novel MINLP model for the design of an electrodialysis (ED) unit that is capable of treating a binary mixture of simple salts was developed from first principles. This ED model was embedded into a water network superstructure optimisation model, where the objective was to minimise freshwater and energy consumption, wastewater productions, and associated costs. The model was applied to a pulp and paper case study, considering several scenarios. Global optimisation of the integrated water network and ED design model, with variable contaminant removal ratios, was found to yield the best results. A total of 38% savings in freshwater, 68% reduction in wastewater production and 55% overall cost reduction were observed when compared with the original design. This model also led to a 80% reduction in regeneration (energy) cost.
Copyright Ownership Is Guided By The University's

Intellectual Property policy

Students submitting a Thesis or Dissertation must be aware of current copyright issues. Both for the protection of your original work as well as the protection of another's copyrighted work, you should follow all current copyright law.