3. Electronic Theses and Dissertations (ETDs) - All submissions

Permanent URI for this communityhttps://wiredspace.wits.ac.za/handle/10539/45

Browse

Search Results

Now showing 1 - 6 of 6
  • Item
    An autonomous smart battery for an isolated 12V distributed DC grid
    (2018) Aswat, Muhammed
    An autonomous smart battery is developed to incorporate storage on an isolated 12V DC grid called the PeCo grid. The PeCo grid is a personal consumer grid aimed at electrification of rural areas with no existing electrical infrastructure. In order to develop the smart battery a 12V lead-acid battery is combined with a Dual Active Bridge (DAB) bi-directional DC-DC converter. Using this combination with the relevant control algorithms the smart device achieves grid stabilisation, black starting and fault protection without the use of a dedicated communication network. These features are achieved through the usage of a decentralised control architecture that is solely based upon the grid voltage. The smart battery is able to seamlessly integrate into an existing system due to its plug and play nature. A working prototype of the smart battery is developed and experimentally validated on the distributed energy system.
  • Item
    Train driver automation strategies to mitigate signals passed at danger on South African railways
    (2018) Van Der Merwe, Johannes Hendrik
    Train derailments or collisions have the potential to result in catastrophic loss of life and/or destruction of property. Ever higher demands for train density (i.e. trains per hour for a given section of track) as well as the catastrophic results when accidents do occur have given rise to the development of railway signalling systems as mitigation measures (Rolt, 2009; Theeg & Vlasenko (2009b). Signals Passed At Danger (SPADs) refers to when a train driver passes a stop signal without authority and is one of the typical causes of such accidents resulting in significant damages reported within Transnet Freight Rail (TFR) in recent years. Studies have shown human train driver error and violation of signals to be a significant cause of SPAD events. This study investigated the application of train driver automation as a mitigation measure against SPADs within the South African railway environment in general and TFR in particular. The study was qualitative in nature, following a model development methodology and used in-depth, semi-structured interviews with railway signalling engineers for data collection. The primary goal was defined to be the development of a train driver function automation method that could be considered the most appropriate within the TFR operational environment. The study determined the most appropriate method to be that of having a human driver with technical supervision. In this arrangement, the human driver could remain in his conventional role of driving the train but with a technical supervision system superimposed that automatically intervenes if a train driver exceeds his movement authority (e.g. Automatic Train Protection or ATP). This approach mitigates many of the costs imposed by human failure associated with SPAD events, yet retains the value of human flexibility which is especially useful under abnormal circumstances.
  • Item
    On the detectability of multiple input multiple output (MIMO) radar signals using conventional electronic warfare support (ES) receivers
    (2016) Huang, Yen-Hsiang
    Multiple-Input Multiple-Output (MIMO) radar is a more general form of phased array radar, where each antenna in the array transmits linearly independent or mutually orthogonal signals. Sustained growth in computational power as well as the decline in the cost of integrated radio frequency (RF) components has made MIMO more viable than in the past. The potential emergence of practical MIMO radar has prompted an investigation into the detectability of MIMO radar signals using existing conventional Electronic warfare Support (ES) receivers such as the Crystal Video Receiver (CVR) and a specific type of superheterodyne receiver (superhet) known as the Zero IF Receiver (ZIFR). Literature on the detectability of MIMO radar signals is extremely scarce and this investigation aims to offer insights into the detectability of MIMO radar signals by means of computer simulations. The fundamental theory necessary for this research includes phased array radar theory, MIMO array radar theory and ES receiver signal detection theory. The detection of MIMO radar signals is compared to a reference phased array case to provide relative context. This investigation focusses on co-located Uniform Linear Arrays (ULA) based radar systems. The result of interest is the relative Signal-to-Noise Ratio (SNR) at which each type of radar can be detected by the ES receiver. Therefore, a lossless transmission, without loss of generality, is assumed. Constraints such as the equal transmit power over all antenna elements in the arrays, are used for a fair comparison. Many different array simulation setups are simulated. These setups are achieved by varying the number of elements in the array and the inter-element spacing. The phased array radar transmitted complex linear chirp signals, and the MIMO radar transmitted Hadamard sequences, interpolated using a Constant Envelope Linear-Route-of-Unity (CE-LRU) technique. The CVR and ZIFR detection thresholds were determined for a Probability of False Alarm (PFA) of 10-4. For all of the setups, the phased array radar was found to be more detectable than the MIMO radar at values of Probability of Detection (PD) below 0.6. The in phase coherent combination of phased array radar signals in its main beam resulted in a signal gain caused by the constructive addition of the signals. This gain thus increases with the number of antenna elements. In contrast, the MIMO signals also add coherently, but the instantaneous phase for each signal is a function of the transmitted signal as well as the direction of propagation relative to the array face. The set of orthogonal signals thus add constructively and destructively, resulting in the average signal power remaining approximately constant despite the number of antenna elements increasing. The difference in detectability of the phased array radar over MIMO radar therefore increases as the number of antenna elements is increased, due to the fact that each element is constrained to transmit a fixed power. Comparing the performance of the ZIFR and CVR, the ZIFR outperforms the CVR. This is due to the fact that the ZIFR implements a quadrature ES receiver, and was able to detect both types of radar signals at a lower SNR than the CVR. However, both ES receivers struggle to detect MIMO radar signals in comparison to detecting phased array radar signals and this performance margin widens as the number of transmitting elements is increased. This result suggests that research into dedicated techniques for the detection of MIMO radar signals using ES receivers may be necessary should the need arise to detect MIMO radar signals in future. This is the first quantitative analysis of the detectability of MIMO radar signals using conventional ES receivers that the author is aware of.
  • Item
    A comparative investigation on performance and which is the preferred methodology for spectrum management; geo-location spectrum database or spetrum sensing
    (2016) Ezebuka, Chijioke Ifakandu
    Due to the enormous demand for multimedia services which relies hugely on the availability of spectrum, service providers and technologist are devising a means or method which is able to fully satisfy these growing demands. The availability of spectrum to meet these demands has been a lingering issue for the past couple of years. Many would have it tagged as spectrum scarcity but really the main problem is not how scarce the spectrum is but how efficiently allocated to use is the spectrum. Once such inefficiency is tackled effectively, then we are a step closer in meeting the enormous demands for uninterrupted services. However, to do so, there are techniques or methodologies being developed to aid in the efficient management of spectrum. In this research project, two methodologies were considered and the efficiency of these methodologies in the areas of spectrum management. The Geo-location Spectrum Database (GLSD) which is the most adopted technique and the Cognitive radio spectrum sensing technique are currently the available techniques in place. The TV whitespaces (TVWS) was explored using both techniques and certain comparison based on performances; implementation, practicability, cost and flexibility were used as an evaluation parameter in arriving at a conclusion. After accessing both methodologies, conclusions were deduced on the preferred methodology and how its use would efficiently solve the issues encountered in spectrum management
  • Item
    Analysis of MEG signals for selective arithmetic tasks
    (2014-09-11) Peyton, Graham
    A magnetoencephalogram (MEG) is a non-invasive tool for measuring neuronal activity with millisecond temporal resolution. In this study, MEG measurements were recorded as a subject carried out a simple, repetitive, numerical task: deciding whether a number is even or odd. Signal processing techniques were applied to the MEG data so as to characterise the spatial and temporal dynamics of the brain during the decision-making process. The data is first preprocessed using Independent Component Analysis (ICA) and other semiautomated methods. The data is then segmented into trials. Evoked fields or event-related fields (ERFs), the classical measure of brain activity, are found by averaging all the trials in the time domain. These responses are typically phase locked to the stimulus. Induced potentials or oscillatory rhythms that are not necessarily phase-locked to the stimulus are found by averaging the time-frequency representations (TFRs) over all the trials. The TFRs were found using the Wavelet Transform. The results show that typical ERF components are present just after the onset of each stimulus. These waveforms indicate that the following sequence of cognitive events occur: mental matching of the stimulus with previously experienced stimuli (N100); higher-order perceptual processing modulated by attention (P200); and “Go-NoGo” control procedure which initiates or inhibits the motor response (N200). The P200 response also indicates that parity information may be retrieved directly from memory rather than being extracted by means of a mental calculation strategy. Time-frequency plots of the data show pronounced synchronisation in the beta-band as the subject is actively concentrating on the mental task. Thereafter, beta band desynchronisation occurs as the motor response is carried out. Activity is pronounced in the left general interpretive area with a latency of around 650ms. This confirms the fact that the brain is lateralised according to function. One important avenue for further research would be to explore source reconstruction using beamforming techniques. This would enable researchers to pinpoint neuronal sources with greater accuracy. Furthermore, functional connectivity analysis may be a useful means of elucidating how information is transmitted and integrated across brain networks. Overall, there is much scope for future work.
  • Item
    Tone labelling algorithm for Sesotho
    (2012-02-06) Raborife, Mpho
    Studies have shown that text-to-speech systems need detailed prosodic models of a language in order to ideally sound natural to native speakers of the language. A text-to-speech system developed for Sesotho needs to have tone implemented in it since Sesotho is a tonal language which uses pitch variations to distinguish lexical and/or grammatical meaning. In order to implement tone for a language such as Sesotho, it is necessary for a tone modeling algorithm to receive as input the tone labels of the syllables of a word. This allows the algorithm to predict the appropriate intonation of the word. The aim of our study is to improve a basic tone labeling algorithm that predicts tone labels using three Sesotho tonal rules. The application of this algorithm is restricted to polysyllabic verb stems. The research study involves implementing an extended tone labeling algorithm that implements four additional Sesotho tonal rules and extends its application to all the other parts of speech. The results of our study show that the extended tone labeling algorithm significantly improves the basic algorithm by increasing the number of matched tone labels. Furthermore, our study provides the basic step to tone modeling for languages such as Sesotho which do not mark tone labels in orthography.
Copyright Ownership Is Guided By The University's

Intellectual Property policy

Students submitting a Thesis or Dissertation must be aware of current copyright issues. Both for the protection of your original work as well as the protection of another's copyrighted work, you should follow all current copyright law.