3. Electronic Theses and Dissertations (ETDs) - All submissions

Permanent URI for this communityhttps://wiredspace.wits.ac.za/handle/10539/45

Browse

Search Results

Now showing 1 - 4 of 4
  • Item
    Partition functions related to identities of euler type
    (2019) Mugwangwavari, Beaullah
    In this research, we shall explore partition functions related to identities of Euler type, mainly focusing on identities due to P. A. MacMahon and M. V. Subbarao. We will give a new bijection for one of the partition theorems due to MacMahon and provide a generalisation of a partition identity due to Subbarao. We will further deduce parity formulas for various related partition functions. Our approach is via generating functions and bijective mappings.
  • Item
    Arithmetic properties of overpartition functions with combinatorial explorations of partition inequalities and partition configurations
    (2017) Alanazi, Abdulaziz Mohammed
    In this thesis, various partition functions with respect to `-regular overpartitions, a special partition inequality and partition con gurations are studied. We explore new combinatorial properties of overpartitions which are natural generalizations of integer partitions. Building on recent work, we state general combinatorial identities between standard partition, overpartition and `-regular partition functions. We provide both generating function and bijective proofs. We then establish an in nite set of Ramanujan-type congruences for the `-regular overpartitions. This signi cantly extends the recent work of Shen which focused solely on 3{regular overpartitions and 4{regular overpartitions. We also prove some of the congruences for `-regular overpartition functions combinatorially. We then provide a combinatorial proof of the inequality p(a)p(b) > p(a+b), where p(n) is the partition function and a; b are positive integers satisfying a+b > 9, a > 1 and b > 1. This problem was posed by Bessenrodt and Ono who used the inequality to study a maximal multiplicative property of an extended partition function. Finally, we consider partition con gurations introduced recently by Andrews and Deutsch in connection with the Stanley-Elder theorems. Using a variation of Stanley's original technique, we give a combinatorial proof of the equality of the number of times an integer k appears in all partitions and the number of partition con- gurations of length k. Then we establish new generalizations of the Elder and con guration theorems. We also consider a related result asserting the equality of the number of 2k's in partitions and the number of unrepeated multiples of k, providing a new proof and a generalization.
  • Item
    Analytic and combinatorial explorations of partitions associated with the Rogers-Ramanujan identities and partitions with initial repetitions
    (2016-09-16) Nyirenda, Darlison
    In this thesis, various partition functions with respect to Rogers-Ramanujan identities and George Andrews' partitions with initial repetitions are studied. Agarwal and Goyal gave a three-way partition theoretic interpretation of the Rogers- Ramanujan identities. We generalise their result and establish certain connections with some work of Connor. Further combinatorial consequences and related partition identities are presented. Furthermore, we re ne one of the theorems of George Andrews on partitions with initial repetitions. In the same pursuit, we construct a non-diagram version of the Keith's bijection that not only proves the theorem, but also provides a clear proof of the re nement. Various directions in the spirit of partitions with initial repetitions are discussed and results enumerated. In one case, an identity of the Euler-Pentagonal type is presented and its analytic proof given.
  • Item
    Combinatorial generalizations and refinements of Euler's partition theorem
    (2015-05-06) Ndlovu, Miehleketo Brighton
    The aim of this research project is to survey and elaborate on various generalizations and re nements of Euler's celebrated distinct-odd partition theorem which asserts the equality of the numbers of partitions of a positive integer into distinct summands and into odd summands. Although the work is not originally my own, I give clarity where there is obscurity by bridging the gaps on the already existing work. I touch on combinatorial proofs, which are either bijective or involutive. In some cases I give both combinatorial and analytic proofs. The main source of this dissertation is [22, 5, 6, 8]. I start by rst summarizing some methods and techniques used in partition theory.
Copyright Ownership Is Guided By The University's

Intellectual Property policy

Students submitting a Thesis or Dissertation must be aware of current copyright issues. Both for the protection of your original work as well as the protection of another's copyrighted work, you should follow all current copyright law.