3. Electronic Theses and Dissertations (ETDs) - All submissions
Permanent URI for this communityhttps://wiredspace.wits.ac.za/handle/10539/45
Browse
2 results
Search Results
Item Investigating the corrosion resistance of copper-ruthenium coatings(2018) Zaba, WinnieCopper has been widely used, and its increased application in different industries resulted in high demands. With more applications, it has increased the need to improve the mechanical, and corrosion properties to improve its life span during operation. Pure copper has been used in many aqueous environments (e.g. pipe lines, storage tanks, and electro-winning) because of its good conductivity and corrosion resistivity. However, when it is exposed to harsh environmental conditions with high acidity it experiences corrosion. This research focuses on these corrosion characteristics. Appropriate surface chemistry is very important in many of the copper applications. Surface engineering techniques have been applied to improve the corrosion property of many materials like stainless steel, but only a few scientific investigations and developments have been done on copper. This development has been carried out by introducing ruthenium to the copper surface to improve the corrosion resistance and serviceability of copper in general. The ruthenium was added to the copper surface using thermal spray coating high velocity oxygen fuel spray coating, cold spray coating, spark plasma sintering, and electroplating. One should note that the nature of the surface coating and arrangement of the powder particles determines the overall protection that can be achieved/induced. For the different coatings and alloys, ruthenium was added in 0.5, 1, and 2 weight percent. This research found that in many cases, the corrosion resistance increased with increase in ruthenium content. The HVOF and SPS experienced the same trend. The CSC coating did not achieve any corrosion resistance improvement when compared to as-received copper. The electroplating of a copper substrate successfully decreased the corrosion rate in sulphuric acid at 65°C. The electroplated powders had contaminations that affected the corrosion characteristics of the coating and the alloy. Other properties of the material were also affected after the ruthenium addition. These also include the hardness of the materials which was increased with the increase in ruthenium content. The research limitations encountered was the shortage of equipment to perform other tests like the scratch adhesion test which would have validated the adhesion property of the coatings.Item Development of diffusion carbide coatings(1993) Fazluddin, Shahed BhaggaThe formation of VC, NbC, and Cr-carbide coatings on steels immersed in molten borax baths containing carbide-forming constituents has been known for some time. A study was made of the formation of carbide coating on steel specimens treated in molten borax cont.ad.Lnr.q ferro-vanadium and V20S as bath additives. The prevalence of oxidizing or reducing conditions in the bath was found to playa decisive role in the formation of the VC layer. The influence of treatment factors such as time, temperature, and bath composition on the thickness of the coating was investigated. A detailed investigation into the behaviour of baths containing V205 and Al was carried out in this regard. Microstructural examination of coated specimens was performed using optical and electron microscopy. Microhardness tests, X-ray diffraction (XRD) and energy dispersive spectroscopy (EDS) analyses were carried out in order to characterise the layers produced. The corrosion behaviour of the vanadf.um carbide coating was evaluated by accelerated electrochemical means. Samples of mild steel and EN9(O.5% C) steel were treated for various lengths of time in order to obtain coatings of various thicknesses. The corrosion resLst.ance of the carbide coating was found to be superior to that of the untreated base alloys. Five diffet"ent tool steel materials were a.lso treated. Microscopy examination and hardness testing of the VC coated tool steels was performed in order to assess the effects of treatment by this process on the bas~ material. The austenitizing temperature and the nature of the carbides in the matrix of the tool steels was found to play an important role in this respect.