3. Electronic Theses and Dissertations (ETDs) - All submissions
Permanent URI for this communityhttps://wiredspace.wits.ac.za/handle/10539/45
Browse
5 results
Search Results
Item Line balancing using metaheuristic methods in BMW South Africa(2017) Hart, RichardThis study documents a project to investigate the possibility of achieving savings in BMW South Africa’s Rosslyn assembly plant through the use of metaheuristics to optimise line balancing methods. Through this project, a customised Ant Colony Optimisation algorithm was developed for the optimisation of the frontend assembly line in this plant. This algorithm is one which was designed to take into account many of the constraints which are found in an automotive manufacturing environment such as work areas, shared processes and sequence constraints. Through the use of the algorithm, a solution was developed which shows improvements to the line balancing in the area. These improvements show a 17% reduction in labour costs in the area, an improvement of 13.12% in the area’s average work loading and an increase in the average work stability of 17.81%. Additionally, improvements were found which would allow this algorithm to be used in other lines in the assembly plant for further savings and improvements.Item Process parameter optimisation of steel components laser forming using a Taguchi design of experiments approach(2017) Sobetwa, SiyasangaThe focus in this research investigation is to investigate the Process Parameter Optimisation in Laser Beam Forming (LBF) process using the 4.4 kW Nd: YAG laser system – Rofin DY 044 to form 200 x 50 x 3 mm3 mild steel - AISI 1008 samples. The laser power P, beam diameter B, scan velocity V, number of scans N, and cooling flow C were the five input parameters of interest in the investigation because of their influence in the final formed product. Taguchi Design of Experiment (DoE) was used for the selection and combination of input parameters for LBF process. The investigation was done experimentally and computationally. Laser Beam Forming (LBF) input parameters were categorised to three different levels, low (L), medium (M), and high (H) laser forming (LBF) parameters to evaluate parameters that yield maximum bending and better surface finish/quality. The conclusion drawn from LBF process is that samples which are LBFormed using low parameter settings had unnoticeable bending and good material surface finishing. On the other hand, samples LBFormed using medium parameters yielded visible bending and non-smooth surface finishing, while samples processed using high LBF parameters yielded maximum bending and more surface roughness than the other two process parameters.Item Simultaneous minimisation of water and energy within a water and membrane network superstructure(2016) Buabeng-Baidoo, EstherThe scarcity of water and strict environmental regulations have made sustainable engineering a prime concern in the process and manufacturing industries. Water minimisation involves the reduction of freshwater use and effluent discharge in chemical plants. This is achieved through water reuse, water recycle and water regeneration. Optimisation of the water network (WN) superstructure considers all possible interconnections between water sources, water sinks and regenerator units (membrane systems). In most published works, membrane systems have been represented using the “black-box” approach, which uses a simplified linear model to represent the membrane systems. This approach does not give an accurate representation of the energy consumption and associated costs of the membrane systems. The work presented in this dissertation therefore looks at the incorporation of a detailed reverse osmosis network (RON) superstructure within a water network superstructure in order to simultaneously minimise water, energy, operating and capital costs. The WN consists of water sources, water sinks and reverse osmosis (RO) units for the partial treatment of the contaminated water. An overall mixed-integer nonlinear programming (MINLP) framework is developed, that simultaneously evaluates both water recycle/reuse and regeneration reuse/recycle opportunities. The solution obtained from optimisation provides the optimal connections between various units in the network arrangement, size and number of RO units, booster pumps as well as energy recovery turbines. The work looks at four cases in order to highlight the importance of including a detailed regeneration network within the water network instead of the traditional “black-box’’ model. The importance of using a variable removal ratio in the model is also highlighted by applying the work to a literature case study, which leads to a 28% reduction in freshwater consumption and 80% reduction in wastewater generation.Item Superstructure optimisation of a water minimisation network with a embedded multicontaminant electrodialysis model(2016) Nezungai, Chiedza Demetria MaputsaThe water-energy nexus considers the relationship between water and energy resources. Increases in environmental degradation and social pressures in recent years have necessitated the development of manufacturing processes that are conservative with respect to both these resources, while maintaining financial viability. This can be achieved by process integration (PI); a holistic approach to design which emphasises the unity of processes. Within the realm of PI, water network synthesis (WNS) explores avenues for reuse, recycle and regeneration of effluent in order to minimise freshwater consumption and wastewater production. When regeneration is required, membrane-based treatment processes may be employed. These processes are energy intensive and result in a trade-off between water and energy minimisation, thus creating an avenue for optimisation. Previous work in WNS employed a black box approach to represent regenerators in water minimisation problems. However, this misrepresents the cost of regeneration and underestimates the energy requirements of a system. The aim of the research presented in this dissertation is to develop an integrated water regeneration network synthesis model to simultaneously minimise water and energy in a water network. A novel MINLP model for the design of an electrodialysis (ED) unit that is capable of treating a binary mixture of simple salts was developed from first principles. This ED model was embedded into a water network superstructure optimisation model, where the objective was to minimise freshwater and energy consumption, wastewater productions, and associated costs. The model was applied to a pulp and paper case study, considering several scenarios. Global optimisation of the integrated water network and ED design model, with variable contaminant removal ratios, was found to yield the best results. A total of 38% savings in freshwater, 68% reduction in wastewater production and 55% overall cost reduction were observed when compared with the original design. This model also led to a 80% reduction in regeneration (energy) cost.Item The modelling and optimisation of aggregate plants, and the use of the Apollo Computer Program(2015-01-26) Hayden, John Samuel