3. Electronic Theses and Dissertations (ETDs) - All submissions
Permanent URI for this communityhttps://wiredspace.wits.ac.za/handle/10539/45
Browse
2 results
Search Results
Item The application of the attainable region concept to the oxidative dehyrogenation of N-butanes in inert porous membrane reactors(2009-04-02T13:10:48Z) Milne, Alan DavidThe availability of kinetic data for the oxidative dehydrogenation (ODH) of n-butane from Téllez et al. (1999a and 1999b) and Assabumrungrat et al. (2002) presented an opportunity to submit a chemical process of industrial significance to Attainable Region (AR) analysis. The process thermodynamics for the ODH of n-butane and 1-butene have been reviewed. The addition of oxygen in less than the stoichiometric ratios was found to be essential to prevent deep oxidation of hydrocarbon products {Milne et al. (2004 and 2006c)}. The AR concept has been used to determine the maximum product yields from the ODH of n-butane and 1-butene under two control régimes, one where the partial pressure of oxygen along the length of the reactor was maintained at a constant level and the second where the oxygen partial pressure was allowed to wane. Theoretical maxima under the first régime were associated with very large and impractical residence times. The Recursive Convex Control policy {Seodigeng (2006)} and the second régime were applied to confirm these maxima {Milne et al. (2008)}. Lower and more practical residence times ensued. A differential side-stream reactor was the preferred reactor configuration as was postulated by Feinberg (2000a). Abstract A.D. Milne Page 4 of 430 The maximum yield of hydrocarbon product, the associated residence time and the required reactor configuration as functions of oxygen partial pressure were investigated for the series combinations of an inert porous membrane reactor and a fixed-bed reactor. The range of oxygen partial pressures was from 85 kPa to 0.25 kPa. The geometric profile for hydrocarbon reactant and product influences the residence times for the series reactors. The concept of a residence time ratio is introduced to identify the operating circumstances under which it becomes advantageous to select an inert membrane reactor in preference to a continuously stirred tank reactor and vice versa from the perspective of minimising the overall residence time for a reaction {Milne et al. (2006b)}. A two-dimensional graphical analytical technique is advocated to examine and balance the interplay between feed conditions, required product yields and residence times in the design of a reactor {Milne et al. (2006a)}.. A simple graphical technique is demonstrated to identify the point in a reaction at which the selectivity of the feed relative to a product is a maximum {Milne et al. (2006a)}. Literature Cited Assabumrungrat, S. Rienchalanusarn, T. Praserthdam, P. and Goto, S. (2002) Theoretical study of the application of porous membrane reactor to Abstract A.D. Milne Page 5 of 430 oxidative dehydrogenation of n-butane, Chemical Engineering Journal, vol. 85, pp. 69-79. Feinberg, M. (2000a) Optimal reactor design from a geometric viewpoint – Part II. Critical side stream reactors, Chemical Engineering Science, vol. 55, pp. 2455-2479. Milne, D., Glasser, D., Hildebrandt, D., Hausberger, B., (2004), Application of the Attainable Region Concept to the Oxidative Dehydrogenation of 1- Butene in Inert Porous Membrane Reactors, Industrial and. Engineering Chemistry Research, vol. 43, pp. 1827-1831 with corrections subsequently published in Industrial and Engineering Chemistry Research, vol. 43, p. 7208. Milne, D., Glasser, D., Hildebrandt, D., Hausberger, B., (2006a), Graphical Technique for Assessing a Reactor’s Characteristics, Chemical Engineering Progress, vol. 102, no. 3, pp. 46-51. Milne, D., Glasser, D., Hildebrandt, D., Hausberger, B., (2006b), Reactor Selection : Plug Flow or Continuously Stirred Tank?, Chemical Engineering Progress. vol. 102, no. 4, pp. 34-37. Milne, D., Glasser, D., Hildebrandt, D., Hausberger, B., (2006c), The Oxidative Dehydrogenation of n-Butane in a Fixed Bed Reactor and in an Inert Porous Membrane Reactor - Maximising the Production of Butenes and Butadiene, Industrial and Engineering Chemistry Research vol. 45, pp. 2661-2671. Abstract A.D. Milne Page 6 of 430 Milne, D., Seodigeng, T., Glasser, D., Hildebrandt, D., Hausberger, B., (2008), The Application of the Recursive Convex Control (RCC) policy to the Oxidative Dehydrogenation of n-Butane and 1-Butene, Industrial and Engineering Chemistry Research, (submitted for publication). Seodigeng, T.G. (2006), Numerical Formulations for Attainable Region Analysis, Ph.D. thesis, University of the Witwatersrand, Johannesburg, South Africa. Téllez, C. Menéndez, M. Santamaría, J. (1999a) Kinetic study of the oxidative dehydrogenation of butane on V/MgO catalysts, Journal of Catalysis, vol. 183, pp. 210-221. Téllez, C. Menéndez, M. Santamaría, J. (1999b) Simulation of an inert membrane reactor for the oxidative dehydrogenation of butane, Chemical Engineering Science, vol. 54, pp. 2917-2925. __________________________________Item The application of the attainable region analysis in comminution.(2008-06-09T10:03:28Z) Khumalo, NgangezweABSTRACT This work applies the concepts of the attainable region for process synthesis in comminution. The attainable region analysis has been successfully applied for process synthesis of reactor networks. The Attainable Region is defined as the set of all possible output states for a constrained or unconstrained system of fundamental processes (Horn, 1964). A basic procedure for constructing the attainable region for the fundamental processes of reaction and mixing has been postulated in reaction engineering (Glasser et al., 1987). This procedure has been followed in this work to construct the candidate attainable region for size reduction processes as found in a size reduction environment. A population balance model has been used to characterise the evolution of particle size distributions from a comminution event. Herbst and Fuerstenau (1973) postulated the dependency of grinding on the specific energy. A specific energy dependent population balance model was used for the theoretical simulations and for the fitting of experimental data. A new method of presenting particle size distributions as points in the Euclidian space was postulated in place of the traditional cumulative distribution. This allows successive product particle size distributions to be connected forming a trajectory over which the objective function can be evaluated. The curve connects products from successive batch grinding stages forming a pseudo-continuous process. Breakage, mixing and classification were identified as the fundamental processes of interest for comminution. Agglomeration was not considered in any of the examples. Mathematical models were used to describe each fundamental process, i.e. breakage, mixing and classification, and an The application of the attainable region analysis in comminution Abstract algorithm developed that could calculate the evolution of product particle size distributions. A convex candidate attainable region was found from which process synthesis and optimisation solutions could be drawn in two dimensional Euclidian space. As required from Attainable Region Theory, the interior of the bounded region is filled by trajectories of higher energy requirements or mixing between two boundary optimal points. Experimental validation of the proposed application of the attainable region analysis results in comminution was performed. Mono-sized feed particles were broken in a laboratory ball mill and the products were successfully fitted using a population balance model. It was shown that the breakage process trajectories were convex and they follow first order grinding kinetics at long grind times. The candidate attainable region was determined for an objective function to maximise the mass fraction in the median size class 2. It was proved that the same specific energy input produces identical products. The kinematic and loading conditions are supposed to be chosen as a subsequent event after the required specific energy is identified. Finally the fundamental process of classification was added to the system of breakage and mixing. The attainable regions analysis affords the opportunity to quantify exactly the reduction in energy consumption due to classification in a comminution circuit, thus giving optimal targets. Classification showed the potential to extend the candidate attainable region for a fixed specific energy input. The boundary of the attainable region is interpreted as pieces of equipment and optimum process conditions. This solves both the original process synthesis and successive optimisation problems.