3. Electronic Theses and Dissertations (ETDs) - All submissions

Permanent URI for this communityhttps://wiredspace.wits.ac.za/handle/10539/45

Browse

Search Results

Now showing 1 - 3 of 3
  • Item
    Flow regime evaluation for pneumatic transport of pulverised fuel
    (2019) Biobaku, Ayodimeji
    The reduction of harmful emissions is an important issue to be dealt with in coal-fired power stations. there are several technologies that have successfully applied to modern power stations to reduce emissions of Oxides of Sulphur and Nitrogen. [Abbreviated Abstract. Open document to view full version]
  • Item
    Development of a condition monitoring philosophy for a pulverised fuel vertical spindle mill
    (2016) Govender, André
    The quantity and particle size distribution of pulverised coal supplied to combustion equipment downstream of coal pulverising plants are critical to achieving safe, reliable and efficient combustion. These two key performance indicators are largely dependent on the mechanical condition of the pulveriser. This study aimed to address the shortfalls associated with conventional time-based monitoring techniques by developing a comprehensive online pulveriser condition monitoring philosophy. A steady-state Mill Mass and Energy Balance (MMEB) model was developed from first principles for a commercial-scale coal pulveriser to predict the raw coal mass flow rate through the pulveriser. The MMEB model proved to be consistently accurate, predicting the coal mass flow rates to within 5 % of experimental data. The model proved to be dependent on several pulveriser process variables, some of which are not measured on a continuous basis. Therefore, the model can only function effectively on an industrial scale if it is supplemented with the necessary experiments to quantify unmeasured variables. Moreover, a Computational Fluid Dynamic (CFD) model based on the physical geometry of a coal pulveriser used in the power generation industry was developed to predict the static pressure drop across major internal components of the pulveriser as a function of the air flow through the pulveriser. Validation of the CFD model was assessed through the intensity of the correlation demonstrated between the experimentally determined and numerically calculated static pressure profiles. In this regard, an overall incongruity of less than 5 % was achieved. Candidate damage scenarios were simulated to assess the viability of employing the static pressure measurements as a means of detecting changes in mechanical pulveriser condition. Application of the validated pulveriser CFD model proved to be highly advantageous in identifying worn pulveriser components through statistical analysis of the static pressure drop measured across specific components, thereby demonstrating a significant benefit for industrial application.
  • Item
    Investigating particle size segregation in a batch jig
    (2016) Silwamba, Marthias
    Particle size and size range are among the characteristics that affect the segregation of particles in a jig hence they affect the separation efficiency. The effects of these variables on segregation of particles are not fully understood. This work aimed at contributing to knowledge in this area. To better understand how particle size and size range influence segregation, tests were conducted in which the effects of the density and shape of the particles on segregation were minimized by using as the feed material spherical glass beads of uniform shape and density. Batch experiments of two components systems of various particle sizes were conducted under the same set of jigging conditions: the jigging frequency and jigging time were respectively maintained at 60 cycles per minute and 999 seconds (16.65 minutes). The effect of these operating conditions on segregation was not investigated. At the end of each test run, the jig bed was split into horizontal slices and the composition of each slice was determined. The experimental results showed that below a particle size ratio of 1.50:1, the driving force for the segregation of particles, i.e. the particle size difference, was small hence a low degree of segregation was obtained. The degree of segregation increased above this ratio. However, above the size ratio of 2.00:1, interstitial trickling occurred. With the smaller particles tested (8, 6 and 4mm) poor segregation was observed when the size ratios were of 1.50:1 or less along with what is believed to have been remixing due to convective currents within the jig chamber. It was found that the particle size range had a more pronounced effect on size segregation than the particle size. From the results, it can be said that above a size ratio of about 1.50:1, size segregation is very pronounced. This suggests that density separations of real ores, where both the density and size of particles vary, would be impaired if the particle size range of the material fed to the jig exceeds this ratio. However, this needs further confirmation by testing multiple component systems.
Copyright Ownership Is Guided By The University's

Intellectual Property policy

Students submitting a Thesis or Dissertation must be aware of current copyright issues. Both for the protection of your original work as well as the protection of another's copyrighted work, you should follow all current copyright law.