3. Electronic Theses and Dissertations (ETDs) - All submissions
Permanent URI for this communityhttps://wiredspace.wits.ac.za/handle/10539/45
Browse
3 results
Search Results
Item Synthesis and characterization of copper chalcogenide nanoparticles and their use in solution processed photovoltaics(2015) Kalenga, Pierre MubiayiPhotovoltaic cells offer a good alternative to the fossil fuels. Several approaches are being analysed in order to have solar cells that are capable to conquer the energy market all around the world. Quantum dots (QDs) have already proven features that can be taken into account to improve the properties of solar cells. Metal selenide nanoparticles (NPs) possess semiconducting behaviours that can vary with their structural and optical properties evolving from their synthesis. The reaction parameters such as the method, time, solvent and precursors can affect the growth and nucleation of particles and thus impose on the properties of the synthesized materials. The performance of solar cells made of the synthesized metal selenides will then be dependent upon the properties of the NPs used as active layer. Furthermore, the electrical current generation also depends on the structure of the deposited active layer and its interface with other films to be assembled for the device. The binary copper selenide, ternary copper indium selenide (CISe), quaternary copper indium gallium selenide (CIGSe) and quinary copper zinc tin sulphur selenide (CZTSSe) NPs were synthesized via conventional colloidal method (CCM) and microwave assisted method (MAM). The MAM has a particular interest as it is less time consuming and can easily be a large scale synthesis. Photovoltaic devices were fabricated from the synthesized materials as proof of concept for photovoltaic activities. The CCM was used to optimize various parameters for the synthesis of each type of the chalcogenide materials as this is easily controllable than the ones from the sealed vessel from MAM. The dependency of properties of all copper chalcogenide NPs on the time, precursor concentration, temperature and solvent of synthesis have been demonstrated via various characterization techniques including ultraviolet-visible-near infrared spectroscopy, photoluminescence spectroscopy, X-ray diffractometry and transmission electron microscopy. The binary copper selenide was first synthesized and considered as a template for evaluation of the use of copper chalcogenide materials in solar cells. Relatively smaller copper selenide NPs with average sizes of 4.5 and 6.0 nm were obtained from conventional colloidal and microwave assisted methods respectively. The sample yielded from the microwave assisted method possessed less polydispersed NPs. The later had better crystallinity in which prevailed a single cubic Cu2Se phase. To the best of our knowledge this is the first evidence of defined shapes and nearly single phase of small sized copper selenide NPs synthesized by mean of the MAM. The copper selenide particles synthesized via this method were used to fabricate a Schottky device. The conditions of copper selenide synthesis were optimized to 250 oC, 30 min of CCM synthesis using oleylamine (OLA) and a Cu/Se ratio of 1:1. Nearly hexagonal facets with blue-shifted absorption band edge of monodispersed NPs sizing 4-8 nm in diameter were obtained. The synthesized copper selenide showed better crystallinity with a single cubic Cu2Se phase. A Schottky device using MAM synthesized copper selenide NPs as the semiconducting layer was fabricated at room temperature. The diode effect was demonstrated with the electrical parameters such as the ideality factor, barrier height and the series resistances extracted from the experimental current-voltage data using the thermionic theory and Cheung’s modification. The thermionic theory resulted in the ideality factor of 4.35 and the barrier height of 0.895 eV whilst the Cheung’s method resulted in the ideality factor, barrier height and series resistance of 1.04, 2.59 10-3 eV and 0.870 Ω respectively. The ternary copper indium selenide NPs showed that the MAM allowed the formation of copper rich NPs alongside secondary products. The synthesis of the ternary sample via CCM was optimized using uncapped precursors (no TOP was added) in OLA at 220 oC for 30 min. The synthesized CuInSe2 NPs possessed a large blue-shift in their absorption band edges and emission peaks. The nearly stoichiometric CuInSe2 particles with diameter sizes of 5-9 nm were found in tetragonal crystalline orientation. The cyclic voltametry (CV) and the absorption spectra showed a large blue-shifted energy gap, about 0.95 eV, an increase from the bulk, proving the quantum confinement effects of synthesized copper indium selenide quantum dots. The CuInSe2 NPs were thus used as absorbing materials in the quantum dot sensitized solar cell devices (QDSSCs). The QDSSC devices were assembled via treatment of the titanium oxide, quantum dot layers and their interface. This was done by the treatment of copper indium selenide surface with mercapto-propionic acid (MPA) and ethanedithiol (EDT) during the deposition of the quantum dots onto TiO2 films. The MPA treatment did not reveal positive effects on copper indium selenide thin film and the assembled device under our optimized working conditions. However the use of EDT allowed the improvement of electron transport. The short circuit current (Jsc), open circuit voltage (Voc) and fill factor (FF) obtained from the current-voltage (J-V) curves reached the values of 324 μA cm-2, 487 mV and 43% respectively, indicating that the investigated quantum dots possess electrical properties. For the quaternary copper indium gallium selenide, relatively small sized NPs were synthesized via CCM and MAM. The CCM synthesized CIGSe NPs were less agglomerated with a shorter tailing in absorption than those from MAM. The stoichiometric CuIn0.75Ga0.25Se2 showed less agglomerated and highly crystalline particles with a large blueshifted absorption band edge and a smaller full width at halth maximum (FWHM) of the emission peak compared to CuIn0.5Ga0.5Se2 and CuIn0.25Ga0.75Se2. The use of OLA as solvent of synthesis improved the growth and dispersivity of copper indium gallium selenide NPs. The particles with a large blue-shifted absorption band edge, a lattice of tetragonal phase, more monodispersed CIGSe and possessing an average size of 6.5 nm were obtained from CCM synthesis using OLA. The OLA as-synthesized CIGSe NPs were used in thin film for the assembly of QDSSC. The device exhibited electrical properties with the Jsc, Voc and FF of 168 μA cm-2, 162 mV and 33% respectively. The overall device performance was poor but may further be improved for further photovoltaic application. The quinary CZTSSe NPs possessed large blue-shifted absorption band edges of 450-460 nm than the bulk material (827 nm). The emission peak at 532 nm and similar FWHM of less than 50 nm were observed in samples from both CCM and MAM. More monodispersed crystals were obtained with both methods whilst the average particle sizes of 10 and 9 nm were yielded from MAM and CCM respectively. The nanoparticles crystallized in tetragonal lattices between copper zinc tin sulphide and copper zinc tin selenide crystals. However, the MAM gave more crystalline phases. The CV and the absorption spectra showed a blue shifted energy gap, about 0.21 eV increase from the buk which is located at 1.51 eV. This is indicative of the quantum confinement effects of synthesized NPs. The evidence of electrical properties was also shown in the QDSSCs fabricated using the MAM synthesized quinary QDs. This was done following the same treatments as for copper indium selenide devices. The Jsc, Voc and FF were found at the maxima of 258 μA cm-2, 395 mV and 38% respectively. The MPA and EDT treatments did not improve the device performance under our working conditions. Nevertheless, the electrical properties observed in the assembled device were indicative of promising efficient solar cells from synthesized CZTSSe NPs.Item Orebody characterisation and structural features that govern copper and cobalt mineralisation in the eastern limb of the Lufilian Arc, Democratic Republic of Congo(2015-02-06) Johnson, Russell DouglasThe Central African Copperbelt is located in the Lufilian Arc which straddles the border between Zambia and the Democratic Republic of Congo (DRC). Mineralisation of the cupriferous Arc is found in basal Neoproterozoic Katangan Supergroup sedimentary rocks, which in DRC are termed the Mines Series Subgroup. The Mines Series is divided into the dolomitic and carbonaceous GRAT, DStrat RSF, RSC, SD and CMN units. The composition of the units is homogeneous across the Lubumbashi district and potentially across the Katangan basin. This study focussed on the Kinsevere and Ruashi deposits in the Lubumbashi district, which are approximately 50 km apart. The study confirmed that relative eustatic sea level changes resulted in the non-deposition of the RSF and RSC stratigraphic units at Kinsevere. Sedimentation was followed by early pervasive potassic alteration and silicification at the diagenetic stage whilst a magnesian dolomitisation event resulted in alteration of potassic feldspars and recrystallisation of carbonates. Albitisation was veincontrolled and late-stage scapolitisation altered evaporitic nodules. Finally, haematisation by late iron-rich fluids circulating through the Roan Group strata resulted in oxidation of sulphides. The structural analysis of Kinsevere Central pit indicates E-W and N-S shortening whereas the Ruashi pit 1 deposit underwent NE-SW and N-S shortening. Initial shortening, associated with Kolwezian deformation (D1), resulted in the formation of NE-thrust folds and a primary set of joints. The Kolwezian deformation event (D2), reoriented the shortening direction from E-W to N-S, creating interference folds and possibly a second set of joints. The final phase in the structural evolution of the Kinsevere and Ruashi deposits was late-stage brittle deformation (faulting). Mineralisation was a multi-stage process. Disseminated chalcopyrite and carrollite were deposited from formation waters during diagenesis in a stable basin environment. Chalcopyrite, carrollite, chalcocite and bornite are predominantly located at the base of the DStrat, whereas chalcopyrite and pyrite dominate the stratigraphically higher portions of the deposits. Hypogene vein mineralisation began at the syn- to late- orogenic stage with carrollite and chalcopyrite in beddingparallel veins. Possible changes in the compression direction created the perpendicularly oriented veins that host chalcopyrite, carrollite, bornite, covellite, digenite and chalcocite. Finally a late stage of chalcopyrite and pyrite deposition occurred in and around the evaporites, indicating a strong correlation between mineralisation, evaporites and scapolitisation. iii Near-surface supergene alteration of hypogene sulphide ores, resulted in Cu-Co carbonates and oxides, such as malachite, azurite, cobaltiferous malachite, chrysocolla, kolwezite and sphaerocobaltite being deposited in vugs and pore spaces above the meteoric water line. Faulted and brecciated zones tend to have deeper supergene alteration. Between the sulphide facies at depth and the supergene oxide facies at surface is a transition zone which marks the depth to which oxidation has penetrated. Sulphur isotope analysis from the Kinsevere and Ruashi deposits suggests a sulphur contribution from a continental Red-Bed sedimentary source and from an evaporitic source.Item Resin-gel synthesis and characterisation of copper and titanium mixed metal oxides nanoparticles(2014-08-21) Dziike, FaraiThe resin-gel method of synthesis successfully produced compounds of mixed metal oxides of copper titanium oxide powders of the form CuxTiyOZ with different compositions. These include Cu3TiO5, Cu3TiO4, Ti3Cu3O, Cu2Ti4O, Cu2Ti2O5 and Cu2TiO3. Heat-treatment of the powders at 300°C, 500°C, 700°C and 900°C for 1 hour was performed to determine the full composition/temperature phase diagram. The target particle size was in the 10- nanometer range, and for most of the samples, this size was achieved. Powder xray diffraction and transmission electron microscopy were the main techniques used to study the crystallization of these materials and their transformation to other polymorphic phases under different temperatures. Phase-match, particle size analysis and TEM imaging determined the properties and characteristics of the respective crystallographic phases of these materials. TEM analysis showed that some powders agglomerated while others exhibited both regular and irregular morphologies and polydisperse particle size distribution. Only a single unique phase was identified, but its structure could not be determined.