3. Electronic Theses and Dissertations (ETDs) - All submissions
Permanent URI for this communityhttps://wiredspace.wits.ac.za/handle/10539/45
Browse
10 results
Search Results
Item The role of supported cobalt catalysts in the methane partial oxidation reaction.(1995) Jeannot, John CharlThe partial oxidation of methane by air to synthesis gas over supported cobalt catalysts was studied. The investigation included analysis of the products of this reaction at various temperatures, and of the structure of the catalysts using powder X-ray diffraction techniques. (Abbreviation abstract)Item The role of supported cobalt catalysts in the methane partial oxidation reaction.(1995) Jeannot, John CharlThe partial oxidation of methane by air to synthesis gas over supported cobalt catalysts was studied. The investigation included analysis of the products of this reaction at various temperatures, and of the structure of the catalysts using powder X-ray diffraction techniques. The most effective catalyst for this reaction was found to be metallic cobalt supported on rhombohedral alumina (prepared as lO%Co/C/'r-A103)' In the presence of this catalyst 96% of tile feed was completely converted to synthesis gas (CO: 2H2) at lOOO°C. This catalyst showed no evidence of coking or loss of activity at lOfO°C over a period of 180 hours. The reaction mechanism is thought to occur in two stages over two distinct zones of the catalyst, Complete reaction of O2 with CH4 to form CO2 and H20 is followed, in the second stage, by reforming and the water gas shift reaction to produce synthesis gas.Item Extending the understanding of metal loading sites on a novel titania nanocatalyst(2016) Malibo, Petrus MolaoaThe hydrothermal method of synthesis was successfully utilized to produce the rutile dandelion support onto which different noble metals were deposited using the deposition precipitation method to prepare the Au-TiO2, Pt-TiO2, Pd-TiO2 and Rh-TiO2 catalysts. The catalysts were prepared at different metals loadings. The deposition precipitation method was also employed to deposit the same metals (Au, Pt, Pd and Rh) onto the rutile (110) and (111) crystal surfaces to model the catalysts. Transmission electron microscopy, scanning electron microscopy and powder X-ray diffraction were used as the main characterization techniques to study the preferred deposition sites of the metals as well as the composition of the catalysts. TEM analysis showed the metals to deposit onto the sides and tips of the rutile nanorods making up the dandelion support structure. SEM analysis showed the metals to deposit onto the (110) and (111) crystal surfaces with the exception of Pd which deposited onto the (111) and (001) surfaces only. TEM analysis showed that the metals agglomerated following Temperature-Programmed Reduction (TPR) under H2 gas. TPR analysis showed strong-metal-support interaction for the Pt, Pd and Rh catalysts.Item Electroless plating : a technique for the preparation of supported cobalt and gold catalysts(2016-07-15) Beetge, Johannes AlbertusThe preparation of supported cobalt and gold catalysts by the technique of electroless plating, and the establishment of the influence of synthesis variables on the physical properties of the supported catalyst, forms the basis of this dissertation. In both the cases of cobalt and gold supported on extruded cylindrical alumina pellets, the penetration profile of the metal into the support showed dependence on the pH of the activation solution, while the metal loading onto the same support showed no dependence on pH of the activation solution at all. The variables involved in the plating process of the activated pellets, namely: i) the concentration of the activation solution, ii) pH and temperature of the plating bath, iii) plating time, and Iv) variation of the concentrations of components of the plating bath all influenced the mass of metal loaded onto the support, but not the penetration characteristics. It is therefore possible to prepare a supported catalyst with very specific , properties using the above information. Under similar conditions, with extruded alumina pellets as support and with the specific plating formulations used, gold showed higher metal loadings at lower gold concentrations than cobalt.Item Synthesis and characterisation of gold-rhodium nanocatalysts and their catalytic activity on carbon monoxide oxidation(2016-05-10) Rikhotso, Rirhandzu ShamaineGold nanoparticles are ideally suited as catalysts for selected low temperature reactions such as CO oxidation for catalytic convertors in the motor industry due to their high activity. But they are prone to sintering at high temperatures. Platinum-group-metal based catalysts are efficient at elevated temperatures and generally inactive at lower temperatures. This study explored the CO oxidation efficiency of gold nanoparticles and of a combination of gold and rhodium nanoparticles. Variables such as pH, loading concentration and type of support were varied to control the final properties of the Au based catalysts. Possible bimetallic systems of gold and rhodium were explored for wider temperature range activity than gold alone. All catalysts were characterised using Transmission Electron Microscopy (TEM), Energy Dispersive X-ray Spectroscopy (EDS) and X-Ray Diffraction (XRD). Activity was measured using a temperature controlled, custom-built reactor linked to a gas chromatograph. The conditions yielding the smallest gold nanoparticles were established by adding 5, 8 or 10 wt.% loadings of chloroauric acid to aqueous suspensions of either TiO2 or SiO2 at pH 5, 7 or 9 and at 70-75 °C over 60 minutes. Each preparation was sealed in parafilm, aged in the dark at room temperature for 3 days, vacuum-filtered and subsequently calcined at 300 °C. Gold nanoparticles were smallest when deposited onto TiO2 instead of SiO2, at pH 7 and at a loading of 5 wt. %. A combination of gold and rhodium catalysts were subsequently prepared using these conditions, with the simultaneous addition of rhodium at 1, 3, 5 or 10 wt. % loading. Hydrolysis of gold is highly dependent upon pH, resulting in the synthesis of smaller particles under alkaline conditions. Catalytic activity of samples analysed at 70 and 150 °C was highest for gold nanoparticles below 5 nm, in agreement with previous studies. In the proposed bimetallic catalysts, it was difficult to distinguish gold and rhodium nanoparticles in TEM images, although EDS confirmed their combined presence on the TiO2 support. Particle sizes remained below 5 nm, appearing monodispersed on the TiO2 support except at 10 % rhodium loading where some nanoparticle aggregation was observed. CO oxidation activity showed an apparent temperaturedependent shift in the optimal rhodium loading. Au-TiO2 catalysts with a 5% loading showed the highest activity up to 350 °C for a period of 10 hours and the catalyst deactivated due to sintering. At 150 and 200 °C the Au/Rh-TiO2 catalyst remained active for more than 12 hours. It was concluded that the inclusion of rhodium is a potentially-favourable method for stabilising the activity of gold catalysts.Item Synthesis of carbon nanofibers and their subsequent use as catalyst supports for Fischer-Tropsch synthesis(2014-07-07) Phaahlamohlaka, Tumelo NathanielIn this study the synthesis and use of carbon nanofibers (CNFs) as catalysts supports for Fischer Tropsch synthesis is reported. The synthesis of carbon nanofibers with two distinct morphologies was optimized based on the reports in the literature that the straight (SCNF) and helical (CCNF) carbon nanofibers grow on Cu catalysts with different particle sizes. To selectively grow CNFs with a single morphology Cu catalysts were designed using different synthesis procedures (by using unsupported, coated and silica supported catalysts). The prepared copper oxide (CuO) nanoparticles were characterized by techniques such as TEM, XRD and nitrous oxide chemisorption. These techniques showed that the unsupported and coated CuO catalyst precursors has large particle sizes (range 100-300 nm) and thus had low Cu atomic surface area, while the supported CuO catalysts displayed low particles sizes in the nanoscale regime (<20 nm) and hence had high atomic surface area. Preparation of CNFs was carried out 300 using acetylene (C2H2) gas as the carbon source. Cu catalysts with large particle sizes resulted in straight CNFs and the small supported Cu nanoparticles grew helical CNFs because of the change in the nanoparticle surface energy during adsorption of the acetylene gas and the silica (SiO2) support effects that limited Cu nanoparticles from sintering (i.e. final particles size 60 nm). Soxhlet extraction proved to be an invaluable step in removing adsorbed polycyclic aromatic hydrocarbons. Because of the low thermal stability of these CNFs the materials were then annealed at higher temperatures ranging from 500-1400 in an inert environment (passing N2 gas). The helical CNFs snapped under high temperature annealing ( 900 ) resulting in shorter lengths in comparison to the straight CNFs. BET analysis of the annealed CNFs indicated that the CNFs annealed at 500 and 900 have increased surface area and have a mesoporous pore structure with the surface area ranging from 200-350 m2/g. Raman and Fourier transform IR spectroscopy indicated that the CNFs annealed at 500 and 900 , (which were the main material of interest because of their high surface area and thermal stability) had different hybridized carbon content. CNFs annealed at 500 contained both sp2 and sp3 hybridized carbon while annealing the CNFs at 900 resulted in a complete rehybridization of the carbon content to sp2. The carbon sp3 content in the CNFs annealed at 500 therefore implied that CNFs annealed at this temperature are more defective in comparison to the CNFs annealed at 900 . Since it is well known that material functionalities are affected by the amount of defects present inside the different CNFs were then applied as catalyst supports for Fischer Tropsch synthesis (FTS) to compare the support effects on cobalt active sites. The CNF surfaces were first modified by functionalization using concentrated HNO3 solution. The preparation of the catalyst systems was performed by a simple HDP method using urea. The CNFs and the FT catalysts were characterized using different techniques such as XRD, TEM, BET, TPR and Raman spectroscopy. Reactor studies performed at 220 (P = 8 bar, GHSV= 1200 mL.h-1. ) showed the catalysts had activities with CO conversion ranging from 25-45%. It was observed that catalysts supported on CNFs annealed at 500 displayed higher average activities of about 15% (based on the CO conversions) in relation to the catalysts supported on CNFs annealed at 900 . Catalysts showed minimal water gas shift reaction and high methane selectivity (i.e. 20-30%) which can be attributed to the small Co crystallite sizes and low pressure reaction conditions.Item Non-oxidative conversion of methane into aromatic hydrocarbons over molybdenum modified H-ZSM-5 zeolite catalysts(2014-07-02) Tshabalala, Themba EmmanuelDehydroaromatization of methane (MDA) reaction was investigated over platinum modified Mo/H-ZSM-5 catalysts which were pre-carbided at 750 oC. The influence of platinum on the catalytic performance and product selectivity of Mo/H-ZSM-5 catalysts for the MDA reaction at 700 oC was studied. The presence of platinum led to a slight decrease in methane conversion. As the platinum loading increased, the methane conversion decreased further and the catalytic stability increased with time-on-stream (TOS) during the MDA reaction. Aromatic selectivities above 90% were obtained with catalysts containing low platinum loadings (0.5 and 1.0 wt.%), with benzene being the most prominent product. A decrease in coke selectivity and coke deposits was noted with the platinum modified Mo/H-ZSM-5 zeolite catalysts. A comparative study was performed to compare platinum, palladium and ruthenium promoted Mo/H-ZSM-5 zeolite catalysts with un-promoted Mo/H-ZSM-5. The ruthenium promoted catalyst proved to be superior in catalytic performance, with a higher methane conversion obtained than found for platinum promoted and palladium promoted Mo/H-ZSM-5 catalysts. Benzene selectivity of about 60% was obtained for ruthenium and palladium promoted Mo/HZSM- 5 catalysts and the total aromatic selectivity was maintained at 90%. TGA results showed a total reduction of 50% by weight of carbon deposited on the promoted Mo/H-ZSM-5 catalyst. Dehydroaromatization of methane was studied over tin modified Pt/Mo/HZSM-5 catalysts and compared to Pt/Mo/H-ZSM-5 catalyst at 700 oC. Addition of tin decreased the activity towards methane aromatization. However, the formation of aromatic compounds was favoured. The CO FT-IR adsorption and CO chemisorption techniques showed that the catalyst preparation method had an effect on the catalytic performance of tin modified Pt/Mo/H-ZSM-5 catalysts. High aromatic selectivity and low coke selectivity were obtained with co-impregnated and sequentially impregnated Pt/Sn catalysts. While a decrease in the formation rate of carbonaceous deposits is mainly dependent on the availability of platinum sites for the hydrogenation of carbon. The order of sequentially loading platinum and tin has an effect on the electronic and structural properties of platinum as shown by XPS and FT-IR studies. CO chemisorption and the FT-IR adsorption studies showed that addition of tin decreased the adsorption capacity of the platinum surface atoms. Catalyst preparation methods and successive calcination treatments affected the location of both tin and platinum atoms in the catalyst. Catalysts prepared by the coimpregnation method showed a good platinum dispersion, better than found for the sequentially impregnated catalysts. The MDA reaction was carried out at 800 oC over manganese modified H-ZSM-5 zeolite catalysts prepared by the incipient wetness impregnation method. The effect of a number of parameters on the catalytic performance and product selectivity was investigated, such as reaction temperature, manganese precursor-type, tungsten as promoter, manganese loading and use of noble metals. The study of the effect of reaction temperature showed that the methane conversion increased linearly with increase in reaction temperature from 700 to 850 oC. The selectivity towards aromatic compounds (of about 65%) was attained for the reactions performed at 750 and 800 oC. Formation rate of carbonaceous deposits increased linearly with increase in reaction temperature. The use of different manganese precursors to prepare Mn/H-ZSM-5 catalysts had an effect on both the catalytic behaviour and the product distribution. High catalytic activities were obtained for the catalysts prepared from Mn(NO3)2 and MnCl2 salts. However, the product distribution was significantly different, with the Mn(NO3)2 catalyst being more selective towards aromatic compounds while the MnCl2 catalyst was more selective toward coke. The effect of manganese loading was studied at 800 oC and an optimum catalyst activity was obtained at 2 and 4 wt.% manganese loadings. The aromatic selectivity above 70% and coke selectivity of 20% were obtained for a 2 wt.% loaded catalyst. Addition of tungsten as a promoter onto the 2 wt.% loaded catalyst (2Mn/H-ZSM-5) lowered the catalytic activity but the catalyst remained fairly stable with increase in TOS. Tungsten modified catalysts favoured the formation of carbonaceous deposits over aromatic compounds. TGA results showed a coke deposit of 164 mg/g.cat, an 88% increase in coke deposit when tungsten was used a promoter. Noble metals were added to reduce the total amount of coke on the tungsten modified Mn/H-ZSM-5 catalysts. The presence of a noble metal favoured the formation of aromatic compounds and suppressed the formation of coke. Platinum and ruthenium promoted catalysts were the active catalysts and aromatic selectivity increased from 12% to 55% and 46% respectively. A reduction in the total amount of coke deposit on the platinum promoted catalyst (42%) and the ruthenium promoted catalyst (31%) was noted.Item Synthesis, characterisation and activity of ruthenium/N-doped multi-walled carbon nanotubes catalysts(2013-07-29) Mabena, Letlhogonolo FortunateNitrogen doped carbon nanotubes (N-CNTs) were synthesised using thermal-Chemical Vapour Deposition (CVD). The obtained material was purified, characterised and used as a support for ruthenium nanoparticles. The catalytic performance of the Ru/N-CNTs was investigated in different chemical reactions. Thus, this thesis is divided into two sections. The synthesis of the nanomaterials, the catalyst performance of nanomaterials in the oxygen reaction reduction (ORR) and activity in the oxidation of styrene and benzyl alcohol. In the first section N-CNTs were synthesised using a thermal-CVD method in a horizontal split-tube furnace. The reactions were carried out in a tubular quartz reactor. Cyclohexanol was used as carbon source, aniline as a nitrogen source and ferrocene as catalyst. A mixture of cyclohexanol-aniline-ferrocene was placed in a quartz boat that was directly introduced in the centre of the first furnace and vaporised at 280 °C. The resultant vapours were transferred to the second furnace where the N-CNTs were grown at a temperature of 900°C under the carrier gas flow (nitrogen or 5% H2 balanced in argon gas). The N-CNTs formed had a fairly crystalline structure, constituted by a periodical bamboo like structure with tubes diameters of 35 - 100 nm and nitrogen content up to 1.3 at. %.The N-CNTs with 0.8 at.% were selected to be used becaused of the quality and the amount of CNTs produced. N-CNTs were then used to support ruthenium (Ru) nanoparticles using a microwave assisted reduction technique. The synthesised nanostructured materials were characterised by TEM, SEM, TGA, and XRD. The TEM images of the Ru catalysts supported on N-CNTs revealed homogenous dispersion of Ru nanoparticles with a narrow sizes distribution and small particle size with an average diameter of 2.5 nm when 500 W power was used. In the second section, part A; four catalysts with different Ru wt. % supported on N-CNTs were prepared: the amount of Ru deposited on the N-CNTs was varied between 0 –10 wt. %. The activity of the prepared nanocatalysts towards the oxygen reduction reaction (ORR) was characterised using the rotating disk electrode and voltammetry techniques. The ORR activity was higher at lower concentrations of Ru on N-CNTs. The 4e- pathway of ORR was more favourable on 2 and 5 % Ru loaded N-CNTs than as 10 % Ru loaded N-CNTs. In Part B; prepared Ru/CNT and Ru/N-CNT catalysts were calcined and used for the liquid-phase oxidation reaction of styrene and benzyl alcohol. The influence of various reaction parameters such as reaction time, catalyst mass, solvent nature and reaction temperature were evaluated. It is interesting to note that the RuO2 on carbon material catalyst was more active for styrene oxidation than for benzyl alcohol oxidation reaction. The conversion of styrene was 41 % and the selectivity to benzaldehyde was 85 % when 5 % RuO2/CNTs catalyst was used with 1,4-dioxane as a solvent at 80 °C in 4 h. The highest conversion of benzyl alcohol was 11 % also with 85 % benzaldehyde selectivity. The benzyl alcohol oxidation was performed at 110 °C for 5 h. Ru/N-CNTs were shown to exhibit better activity for a styrene oxidation reaction. Therefore further investigations on the activity of nitrogen doped carbon nanotubes (N-CNTs*) prepared by reaction of acetylene (C2H2) and acetonitrile (CH3CN) at 700 °C over a 10 % Fe-Co supported on calcium carbonate (CaCO3) catalyst was investigated for styrene oxidation. In this case the nitrogen doped carbon nanotubes (N-CNTs*) with 2.2 at. % nitrogen content was used. A 5 % Ru/N-CNT* catalyst was highly selective as compared to the previous N-CNT supports used in the styrene oxidation reaction. Comparing the support it was deduced that the nitrogen present in the support is playing a major role. With the increase in the nitrogen content in the matrix of the CNTs the conversion of styrene decreased but with an increase in the selectivity. The selectivity towards benzaldehyde was 96 % after 4 h when N-CNTs* were used as support for the styrene conversion reaction. In comparison for the RuO2 on CNTs and N-CNTs the styrene conversions were 85 and 87 % respectively.Item Investigating the effect of gold-palladium bimetallic nanoparticles on TiO2 and the catalytic activity in CO oxidation(2013-04-29) Ntholeng, NthabisengIn recent years, studies have shown that supported Au catalysts have high activity for CO oxidation at low or ambient temperatures. However, the activity of these catalysts is dependent on a lot of synthesis conditions as reproducibility of small sized gold particles is hard. In this study supported Au catalysts were prepared via deposition precipitation-method (DP). The small sized Au particles were supported on TiO2 (P25). The suitable synthesis conditions such as pH, aging, metal loading and catalyst pre-treatment were investigated in order to obtain optimum synthesis conditions. The catalysts were characterized with TEM, XRD, and HRTEM. It was found that 3.7 nm Au particles were best synthesized when Au metal loading is 3% at pH 8 and aged for 72 h. The suitable calcination temperature was 200 °C. It was found that the Au particle size was 4.5 nm when Au was supported on SiO2 thus making TiO2 a suitable support. Bimetallic catalyst was synthesized via DP where Pd metal was incorporated as the second metal. It was found that the type of bimetallic formed was heterostructed where both metals where separately attached on the support. The interatomic distance measured from HRTEM results confirmed that both metal were individually attached on the support. XRD results showed that there was no Au-Pd alloy phase or PdO confirming that the Pd metal on the support was indeed in metallic form. Carbon monoxide (CO) oxidation reactions were undertaken in a tubular glass flow reactor. The monometallic Au catalyst showed superior activity at 200 °C with almost 100% CO conversion. It was also observed that the activity of these catalyst decreased as temperature increased. The CO-TPD studies showed that as temperature increased there was a low CO adsorption due to a decrease in adsorption sites. Varying Pd composition in the bimetallic catalyst did not enhance catalytic activity. However, 25Au75Pd catalyst showed a better conversion as compared to other Au-Pd catalysts. Temperatures studies on bimetallic catalysts showed that as temperature increased there was a decrease in activity. The observed decrease could be attributed to catalyst formation of large particle aggregates. It was also assumed that the low activity was due to how these catalysts were prepared as there was no surfactant utilized during preparation.Item A stable high temperature gold nano-catalyst: synthesis, characterization and application(2013-01-31) Barrett, Dean HowardA stable high temperature gold nano-catalyst: synthesis, characterization and application The ability of supported gold nanoparticles to catalyse many reactions even at very low temperatures has spurred a great deal of research into the eld. Reactions such as CO oxidation and NOx reduction have many industrial applications as well as uses in the motor industry for catalytic converters. The interest is both for scienti c as well as economic reasons as gold supplies far exceed all PGM supplies. Scienti cally gold catalysts are able to catalyze reactions from below 0°C, a feat that no PGM catalyst can achieve. The low temperature activity of gold catalysts will reduce the emission of pollutants during start up. Since the discovery and development of gold catalysts one of the most researched topics has been nding ways to stabilise the gold nanoparticles on the support surface. The importance of gold nanoparticle stability is crucial as the catalysts are only highly active if the gold nanoparticles are less than 5 nm in size. A number of companies have worked to develop gold catalysts that are stable for long durations at temperatures over 450°C with no signi cant progress made over the last two decades other than a catalyst produced by Toyota. In this thesis, literature reviews of current support materials as well as synthesis methods are investigated in order to determine reasons for the instability of current gold catalysts. Further, the Mintek Aurolite catalyst is tested and its deactivation mechanisms probed using in-situ VT-PXRD, Rietveld re nement, TEM, HR-TEM, as well as CO oxidation tests. Testing revealed aws in the support structure of the catalyst which resulted in dramatic deactivation. As titania is such a common support material for many reactions in industry as well as being known to be one of the best supports for gold it was chosen as a support material. However, as is revealed, in its current forms and morphologies it is unable to provide the thermodynamically stable and high surface areas that are required for a stable catalyst After the development of a robust and reproducible synthesis method for the deposition of gold and other PGM's a number of supports were tested. These include silica and zirconia as well as titania derivatives such as Degussa P25 and commercial anatase. Initially these supports o er high usable surface areas but after a relatively small amount of time complete deactivation occurs. Reasons for this deactivation are determined and the information gained is used to develop supports that can combat these deactivation processes. Phase pure nano anatase is synthesised which produced a support with an incredibly large surface area compared to the aforementioned supports. The catalyst was able to withstand temperatures over 450°C for longer durations compared to other catalysts exposed to the same conditions. However, the phase conversion of the anatase to its thermodynamically stable form rutile once again deactivated the catalyst with time. Finally a rutile nanosupport is developed with the desired morphology and thermodynamic stability needed for high temperature applications. The catalyst is able to withstand temperatures over 550°C for more than 200 hours as well as still being active after exposure to 810°C. The industrial Aurolite catalyst showed complete deactivation after just 12 hours at 500°C. The catalyst produced in this thesis has been shown to be one of the most stable and thermally resistant gold catalysts in the world.