3. Electronic Theses and Dissertations (ETDs) - All submissions

Permanent URI for this communityhttps://wiredspace.wits.ac.za/handle/10539/45

Browse

Search Results

Now showing 1 - 3 of 3
  • Item
    Development of complex shaped alumina parts by gelcasting and additive manufacturing
    (2019) Ndinisa, Sindi Sithembiso
    Gelcasting is a fabrication method for achieving near net shape of complex alumina parts capable of high performance. The processes used in gelcasting are similar to processes often used in conventional ceramic forming process. However, the relative high costs involved in the fabrication of non-porous moulds required by the process makes it uneconomical for new developments and low volume productions. In this study, an inexpensive and efficient way involving negative additive manufacturing and gelcasting was used to achieve the fabrication of complex geometries of alumina parts that cannot be formed by conventional methods. Additive manufacturing through fused deposition modelling of ABS filament was used to produce moulds for investment casting. Low toxicity monomers were identified and from these, the rheological behaviour of suspensions was optimized to successfully fabricate complex geometries by ensuring satisfactory mould filling. The suspension contained a ceramic powder, dispersing medium and organic monomers was poured into the non-porous ABS mould and a gel formed. The mould was then dissolved away in acetone to obtain the complex shaped part. Different complex geometries of alumina with near full densities (≤99.6%RD) were achieved using a 40vol% solids loading and 0.3wt% co-polymer of Isobutylene and maleic anhydride monomer system. This fabrication process enables low cost production of complex shaped alumina parts. The alumina components produced exhibited properties similar to those that are produced using traditional processing techniques. The ceramic components had relative densities up to 99%.The hardness and fracture toughness were measured to be 18GPa and 3.8MPa.√m respectively after pressure-less sintering at 1650°C in air for 3hrs.
  • Item
    Carbothermic reduction of alumina into a metallic solvent phase
    (1998) Caizergues, Derek
    Experiments have been conducted at around 17000C to determine the whether carbothermic reduction of alumina is possible at these temperatures. Total pressure of the system was reduced to around 30 kPa and various metallic solvents such as copper, nickel, iron and tin were used to dissolve the metallic aluminium produced. The use of a solvent (and hence decreasing the activity of metallic aluminium) and a lower pressure are thermodynamic requirements to increase the extent of reduction under a given set of conditions. This enables the use of lower temperatures than are required under atmospheric conditions. The highest recovery of aluminium was achieved with the nickel solvent decreasing in order from iron, copper and tin. This ranking was also in accord with the extent of deviation from ideality in the respective binary solutions of these solvents with aluminiur, The nickel-aluminium system displays the largest negative deviation from ideality whereas the till, aluminium system showed a positive deviation. The rate and extent of the reduction was found to be highly dependent on temperature and pressure. The pseudo first order reaction rate was found to be the primary order for the reduction of aluminium in all the solvents used. It is also suggested that the reduction rate was controlled primarily by chemical reaction rate father than by transport processes. This is due to the extreme sensitivity of the rate and extent of the reaction to temperature.
  • Item
    Improvement of alumina mechanical and electrical properties using multi-walled carbon nanotubes and titanium carbide as a secondary phase
    (2013-10-04) Nyembe, Sanele Goodenough
    The objective of this research was to improve alumina (Al2O3) mechanical and electrical properties by reinforcement using multi-walled carbon nanotubes (MWCNTs) and titanium carbide (TiC). The objective of the study was achieved with interesting and challenging difficulties along the way. The MWCNTs were initially coated with boron nitride (hBN) in order to improve the Alumina-CNTs interface which was previously discovered to be weak and also to protect them from reacting with Al2O3 during sintering. The coating of CNTs with hBN was done using nitridation method. This method was unsuccessful since it was not possible to coat each CNT individually. Dispersing hBN coated CNTs proved to be impossible without pealing the off the hBN coating. The “flaking off “of the hBN coating from the CNTs revealed that the CNT-hBN interface was weak; therefore uncoated CNTs were used for this study. The starting powders (Al2O3, TiC and CNTs) were individually dispersed before they were mixed together. TiC and Al2O3 were dispersed using an ultrasonic probe which was done successfully. The CNTs were dispersed by an ultrasonic probe and then attritor milled with the use of polyvinylpyrolidone (PVP) as a dispersant. The dispersed Al2O3 and TiC (30 wt%) powders were mixed in a planetary ball mill. The composite powder was sieved and sintered using SPS with temperature and pressure programmed to be 1700˚C, 35MPa respectively. In making the Al2O3+CNT composite powder, the already dispersed Al2O3 and CNTs (1 wt%) were mixed in a planetary ball mill, after sieving the powder it was sintered using SPS at 1600˚C, 35MPa (programmed conditions). Lastly in making the Al2O3+CNT+TiC composite, the already dispersed TiC, CNTs and Al2O3 were all mixed in a planetary ball mill, after sieving it was sintered using SPS at 1650˚C, 35MPa (programmed conditions). For comparison of properties, dispersed monolithic Al2O3 was also sintered using SPS at 1600˚C, 35 MPa. The density results showed that the monolithic Al2O3 was 99.8% dense, , Al2O3+CNTs was 99.4%, Al2O3+TiC+CNTs was 99.2% and Al2O3+TiC sample was 99.0%. The mechanical properties of the samples were measured using the indentation method. The hardness and fracture toughness of the samples were; Al2O3= 3.3MPa√m (17 GPa), Al2O3+CNTs = 4.2MPa√m (18 GPa), Al2O3+TiC = 4.8 MPa√m (23 GPa) and Al2O3+TiC+CNT= 5.0 MPa√m (23 GPa). The electrical properties showed that incorporating CNTs and TiC into Al2O3 improved Al2O3 electrical conductivity. The measured electrical conductivity of the ceramic samples were; Al2O3 iii ≈ 0 Sm-1, Al2O3+CNTs= 30 S.m-1, Al2O3 +TiC + CNTs = 6855 S.m-1 and Al2O3+TiC = 9664 S.m-1. The CNTs improved Al2O3 mechanical properties slightly inhibiting grain growth by pinning the grain boundary movement and also by crack bridging. The Al2O3 electrical conductivity was increased by the CNTs network that was located along the alumina grain boundaries. The TiC improved Al2O3 mechanical properties slightly inhibiting grain growth and through crack deflection mechanism. The addition of TiC into Al2O3 increased the electrical conductivity by serving as a conducting continuous secondary phase. The results show that the CNT-hBN interface is weak. The addition of CNTs and TiC into monolithic Al2O3 slightly improved its mechanical and electrical properties but it density was slightly compromised. CNTs and TiC slightly improved monolithic alumina hardness by in inhibiting Al2O3 grain growth and the fracture toughness through crack deflection and crack bridging mechanisms. The CNTs network located at the Al2O3 grain boundaries not only aided in improving Al2O3 hardness but also served as transport medium for electrons hence increasing the Al2O3 electrical conductivity. Addition of TiC into Al2O3 increased its electrical conductivity by conducting electrons from one TiC grain to the adjacent grain. The large increase in electrical conductivity upon addition of TiC is due to the presence of a continuous TiC phase within Al203.
Copyright Ownership Is Guided By The University's

Intellectual Property policy

Students submitting a Thesis or Dissertation must be aware of current copyright issues. Both for the protection of your original work as well as the protection of another's copyrighted work, you should follow all current copyright law.